Comparision Bayesian Copula-AR(1)-GARCH(1,1) Models with Asymmetric Conditional Distribution
DOI:
https://doi.org/10.15678/ZNUEK.2017.0971.1107Keywords:
copula, Copula-AR-GARCH model, Bayesian inference, Bayesian model comparison, Bayesian pooling approach, Monte Carlo Important SamplingAbstract
The main aim of the paper is to formally assess the relative explanatory power of competing bivariate Copula-AR-GARCH models with symmetric and skewed Student t distributions on the example of data from the The Warsaw Stock Exchange. The subject of comparison were 22 Copula-AR(1)-GARCH (1,1) models, which differed in assumptions on the copula and the occurrence of skewness in marginal distributions. In the context of the models under consideration, Monte Carlo Important Sampling methods were used to estimate the characteristics of a posteriori distribution and the marginal density of the observation matrix. For analysing empirical data, a posteriori models turned out to be ones more likely to have symmetrical conditional t-Student distributions. For the logarithmic daily growth rates of the two sub-indicies of the stock index WIG, the highest a posteriori probability was obtained by the Clayton-Gumbel copula model. The use of the skewed Student's t-distribution did not improve the explanatory power of the Copula-GARCH models.
Downloads
References
Bollerslev T. [1986], Generalized Autoregressive Conditional Heteroskedasticity, „Journal of Econometrics”, vol. 31, nr 3, https://doi.org/10.1016/0304-4076(86)90063-1. DOI: https://doi.org/10.1016/0304-4076(86)90063-1
Czado C. [2010], Pair-Copula Construction of Multivariate Copulas [w:] Copula Theory and Its Application, P. Jaworski, F. Durante, W. Hardle, T. Rychlik (ed.), Lecture Notes in Statistics-Proceedings, Springer, Berlin.
Doman R. [2010], Modelling the Dependencies between the Returns on the Worsow Stock Indices Using Time Varying Copulas [w:] Financial Markets: Principles of Modelling, Forecasting and Decision-Making, W. Milo, P. Wdowiński, P. Szafrański (ed.), Find Econ Monograph Series: Advances in Financial Market Analysis, No. 8, Łódź University Press, Łódź.
Doman R. [2011], Zastosowania kopuli w modelowaniu dynamiki zależności na rynkach finansowych, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
Doman M., Doman R. [2014], Dynamika zależności na globalnym rynku finansowym, Difin, Warszawa.
Durante F., Sempi C. [2016], Principles of Copula Theory, CRS Press, Taylor and Francis Group LLC.
Fiszeder P. [2009], Modele klasy GARCH w empirycznych badaniach finansowych, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
Geweke J. [1989], Bayesian Inference in Econometric Models Using Monte Carlo Integration, „Econometrica”, vol. 57, nr 6, https://doi.org/10.2307/1913710. DOI: https://doi.org/10.2307/1913710
Huard D., Evin G., Favre A.C., [2006], Bayesian Copula Selection, „Computational Statistics and Data Analysis”, vol. 51, nr 2, https://doi.org/10.1016/j.csda.2005.08.010. DOI: https://doi.org/10.1016/j.csda.2005.08.010
Jaworski P. [2012], Wybrane zagadnienia modelowania zmienności na rynkach finansowych z wykorzystaniem kopuli i procesów GARCH, http://docplayer.pl/1206688-Wybrane-zagadnienia-modelowania-zmiennosci-na-rynkach-finansowych-z-wykorzystaniem-kopuli-i-procesow-garch.html (data dostępu: 20.04.2017).
Joe H. [1993], Parametric Family of Multivariate Distribution with Given Margins, „Journal of Multivariate Analysis”, vol. 46, nr 2, https://doi.org/10.1006/jmva.1993.1061. DOI: https://doi.org/10.1006/jmva.1993.1061
Jondeau E., Rockinger M. [2006], The Copula-GARCH Model of Conditional Dependencies: An International Stock Market Application, „Journal of International Money and Finance”, vol. 25, nr 5, https://doi.org/10.1016/j.jimonfin.2006.04.007. DOI: https://doi.org/10.1016/j.jimonfin.2006.04.007
Kloek T., Dijk H. K. van [1978], Bayesian Estimates of Equation System Parameters. An Application of Integration by Monte Carlo, „Econometrica”, vol. 46, nr 1, https://doi.org/10.2307/1913641. DOI: https://doi.org/10.2307/1913641
Mokrzycka J., Pajor A. [2016], Formalne porównanie modeli Copula-AR(1)-GRACH(1,1) dla subindeksów indeksu WIG, „Przegląd Statystyczny”, R. LXIII, z. 2.
Nelsen R.B. [1999], An Introduction to Copulas, Springer-Verlag, New York.
Osiewalski J. [2001], Ekonometria bayesowska w zastosowaniach, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
Pajor A. [2003], Procesy zmienności stochastycznej SV w bayesowskiej analizie finansowych szeregów czasowych, Monografie: Prace Doktorskie, Nr 2, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
Pajor A. [2017], Estimating the Marginal Likelihood Using the Arithmetic Mean Identity, „Bayesian Analysis”, vol. 12, nr 1, https://doi.org/10.1214/16-ba1001. DOI: https://doi.org/10.1214/16-BA1001
Patton A. J. [2001], Modelling Time Varying Exchange Rate Dependence Using the Conditional Copula, Discussion Paper2001-09 University of California, San Diego. DOI: https://doi.org/10.2139/ssrn.275591
Patton A. J. [2006a], Estimation of Multivariate Models for Time Series of Possibly Different Lengths, „Journal of Applied Econometrics”, vol. 21, nr 2, https://doi.org/10.1002/jae.865. DOI: https://doi.org/10.1002/jae.865
Patton A. J. [2006b], Modelling Asymmetric Exchange Rate Dependence, „International Economic Review”, vol. 47, nr 2, https://doi.org/10.1111/j.1468-2354.2006.00387.x. DOI: https://doi.org/10.1111/j.1468-2354.2006.00387.x
Pipień M. [2006], Wnioskowanie bayesowskie w ekonometrii finansowej, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
Rossi J. L., Ehlers R. S., Filho M.G.A. [2012], Copula-GARCH Model Selection: A Bayesian Approach, Technical Report 88, University of São Paulo, https://www.semanticscholar.org/paper/Copula-GARCH-Model-Selection%3A-A-Bayesian-Approach-Rossi-Ehlersa/fc1d11dd1fbe3f46ae83f0ae87ae02a5cefb58fe.
Silva R., Lopes H.F. [2008], Copula Marginal Distributions and Model Selection: A Bayesian Note, „Statistical Computing”, vol. 18, nr 3, https://doi.org/10.1007/s11222-008-9058-y. DOI: https://doi.org/10.1007/s11222-008-9058-y