Zarządzanie ryzykiem w systemach intelligent manufacturing z zastosowaniem analizy bayesowskiej
DOI:
https://doi.org/10.15678/ZNUEK.2016.0949.0107Słowa kluczowe:
proces produkcyjny, ryzyko, prognozowanie, hutnictwo, temperatura, reprezentacja przestrzeni stanu, BayesAbstrakt
Głównym celem artykułu jest zaprezentowanie zarysu nowoczesnej metodyki prognozowania i analizy ryzyka procesu produkcyjnego oraz cech charakterystycznych pomiarów dokonywanych podczas trwania procesu hutniczego. Metodyka oparta jest na reprezentacji systemu dynamicznego w przestrzeni stanu oraz na wnioskowaniu bayesowskim. Pozwala to przede wszystkim uchylić założenie o stałości szacowanych parametrów, prowadzić analizę dla całości rozkładu statystycznego oraz uwzględnić tzw. informację a priori, czyli pochodzącą spoza zbioru danych. Praca ma charakter przeglądowy i stanowi podstawę do dalszych badań, które dotyczą wdrożenia koncepcji intelligent manufacturing w polskich przedsiębiorstwach przemysłowych.
Pobrania
Bibliografia
Ahmad I., Kano M., Hasebe S., Kitada H., Murata N. [2014], Prediction of Molten Steel Temperature in Steel Making Process with Uncertainty by Integrating Gray-Box Model and Bootstrap Filter, „Journal of Chemical Engineering of Japan”, vol. 47, nr 11, http://dx.doi.org/10.1252/jcej.14we067. DOI: https://doi.org/10.1252/jcej.14we067
Barczak A.S. [2002], Modelowanie ewolucji obiektu gospodarczego [w:] Przestrzenno-czasowe modelowanie i prognozowanie zjawisk gospodarczych, red. A. Zeliaś, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
Makroekonometryczny model gospodarki opartej na wiedzy [2009], red. W. Welfe, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Miczka M. [2008], Strukturalne modelowanie ekonometryczne ewolucji obiektu gospodarczego, „Wiadomości Statystyczne”, nr 7.
Miczka M. [2013], Schumpeterowskie modele wzrostu gospodarczego [w:] Zastosowanie metod ilościowych i jakościowych w modelowaniu i prognozowaniu zjawisk społeczno-gospodarczych, red. B. Pawełek, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków.
Miczka M. [2014], Analiza funkcji produkcji i wydajności pracy dla wybranych działów polskiego przemysłu – weryfikacja empiryczna z zastosowaniem metodyki badań panelowych [w:] Modelowanie i prognozowanie zjawisk społeczno-gospodarczych. Teoria i praktyka, red. B. Pawełek, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków.
Osiewalski J. [2001], Ekonometria bayesowska w zastosowaniach, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
Romer P.M. [1994], The Origins of Endogenous Growth, „Journal of Economic Perspectives”, vol. 8, nr 1, http://dx.doi.org/10.1257/jep.8.1.3. DOI: https://doi.org/10.1257/jep.8.1.3
Strategic Research Agenda: A Vision for the Future of the Steel Sector [2013], European Steel Technology Platform, 2nd ed., May, ftp://ftp.cordis.europa.eu/pub/estep/docs/sra-052013-en.pdf.
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2016 Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.