Firth's Logistic Regression Approximation by Weighting Observations

Authors

  • Kamil Fijorek Uniwersytet Ekonomiczny w Krakowie, Katedra Statystyki

DOI:

https://doi.org/10.15678/ZNUEK.2013.0923.07

Keywords:

logistic regression, bias reduction, complete separation, approximate estimation

Abstract

Firth's approach to a logistic regression is presented from the perspective of weighted data points. Hidden Logistic Model is reformulated accordingly and two approximations of Firth's procedure are introduced. A simulation study was conducted to investigate and compare the quality of the approximations.

Downloads

Download data is not yet available.

References

Albert A., Anderson J.A. [1984], On the Existence of Maximum Likelihood Estimates in Logistic Regression Models, „Biometrika", vol. 71. DOI: https://doi.org/10.2307/2336390

Cordeiro G., Barroso L. [2007], A Third-order Bias Corrected Estimate in Generalized Linear Models, „Test", vol. 16, nr 1. DOI: https://doi.org/10.1007/s11749-006-0002-1

Fijorek K. [2012], Porównanie modeli regresji logistycznej odpornych na problem całkowitego rozdzielenia, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, nr 884, Kraków.

Finney D.J. [1947], The Estimation from Individual Records of the Relationship between Dose and Quantal Response, „Biometrika", vol. 34. DOI: https://doi.org/10.2307/2332443

Firth D. [1993], Bias Reduction of Maximum Likelihood Estimates, „Biometrika", vol. 80. DOI: https://doi.org/10.2307/2336755

Greene W.H. [2003], Econometric Analysis, Pearson Education, New Jersey.

Heinze G. [1999], The Application of Firth's Procedure to Cox and Logistic Regression, Technical Report 10, Department of Medical Computer Sciences, Section of Clinical Biometrics, Vienna University, Vienna.

Heinze G. [2006], A Comparative Investigation of Methods for Logistic Regression with Separated or Nearly Separated Data, „Statistics in Medicine", vol. 25. DOI: https://doi.org/10.1002/sim.2687

Heinze G., Ploner M. [2004], A SAS Macro, S-PLUS Library and R Package to Perform Logistic Regression without Convergence Problems, Technical Report 2, Section of Clinical Biometrics, Department of Medical Computer Sciences, Medical University of Vienna, Vienna.

Heinze G., Schemper M. [2002], A Solution to the Problem of Separation in Logistic Regression, „Statistics in Medicine", vol. 21. DOI: https://doi.org/10.1002/sim.1047

Hosmer D.W., Lemeshow S. [2000], Applied Logistic Regression, John Wiley and Sons.

Long J.S. [1997], Regression Models for Categorical and Limited Dependent Variables, Sage, Thousand Oaks.

R Development Core Team. R: A Language and Environment for Statistical Computing [2010], R Foundation for Statistical Computing, Vienna.

Rousseeuw P.J., Christmann A. [2003], Robustness against Separation and Outliers in Logistic Regression, „Computational Statistics and Data Analysis", vol. 43. DOI: https://doi.org/10.1016/S0167-9473(02)00304-3

Tutz G., Leitenstorfer F. [2006], Response Shrinkage Estimators in Binary Regression, „Computational Statistics and Data Analysis", vol. 50. DOI: https://doi.org/10.1016/j.csda.2005.04.009

Downloads

Published

08-12-2015

Issue

Section

Articles

How to Cite

Fijorek, K. (2015). Firth’s Logistic Regression Approximation by Weighting Observations. Krakow Review of Economics and Management Zeszyty Naukowe Uniwersytetu Ekonomicznego W Krakowie, 923, 87-98. https://doi.org/10.15678/ZNUEK.2013.0923.07