The Determination of Grain Size and Volume Fraction of Austenite in 1.4307 Stainless Steel after Cold Rolling
DOI:
https://doi.org/10.15678/ZNUEK.2013.0924.03Keywords:
stainless steel, austenite, X-ray diffraction, crystallite sizeAbstract
The material under investigation was a commercial austenitic stainless steel SS 1.4307 (EN) equivalent to AISI 304L. The samples of SS 1.4307 were rolled, achieving a 56, 60 and 62% reduction in thickness. The plastic deformation reduced austenite phase at the expense of the newly formed martensite phase. The volume fraction of austenite phase, crystallite size and lattice strain were calculated from X-ray line broadening. The X-ray diffraction measurements were carried out in a Philips X-Pert diffractometer using KαCu radiation.
Downloads
References
Baczmański A., Dakhlaoui R., Braham C., Wierzbanowski K. [2008], Examination of Mechanical Behavior of Aged Duplex Steel Using X-Ray and Neutron Diffraction Methods, „Archives of Metallurgy and Materials", vol. 53, iss. 1.
Dul M., Bażela W. [2010], Określenie struktury krystalicznej oraz wielkości ziaren nanokrystalicznych próbek związku La0.7Sr0.3O3, Wydawnictwo Politechniki Krakowskiej, zeszyt 1, rok 107, Kraków.
Faryna M. [2013], Efekty strukturalne przemian fazowych, wykład 5, http://www.imim.pl/files/Wykladyprof_MF/Efekty_strukturalne_Wyklad_5.pdf (dostęp: październik 2013).
Hedayati A., Najafizadeh A., Kermanpur A., Forouzan F. [2010], The Effect of Cold Rolling Regime on Microstructure and Mechanical Properties of AISI 304L Stainless Steel, „Journal of Materials Processing Technology", vol. 210. DOI: https://doi.org/10.1016/j.jmatprotec.2010.02.010
Lee Y.K., Shin H.C., Leem D.S., Choi J.Y., Jin W., Choi C.S. [2003], Reverse Transformation Mechanism of Martensite to Austenite and Amount of Retained Austenite after Reverse Transformation In Fe-3Si-13Cr-7Ni (wt-%) Martensitic Stainless Steel, „Materials Science and Technology", vol. 19, iss. 3. DOI: https://doi.org/10.1179/026708303225009742
Metaloznawstwo - wybrane zagadnienia [2005], red. J. Pacyna, Wydawnictwo AGH, Kraków.
Ozgowicz W., Kurc A. [2009], The Effect of the Cold Rolling on the Structure and Mechanical Properties in Austenitic Stainless Steels Type 18-8, „Archives of Materials Science and Engineering", vol. 38, nr 1.
Pawłowski B. [2013], Obróbka cieplna i cieplno-chemiczna stali, http://www.kmimp.agh.edu.pl/pliki/oc.pdf (dostęp: październik 2013).
PN-EN 10020:2003. Definicje i klasyfikacja gatunków stali.
Qayyum A., Naveed M.A., Zeb S., Murtaza G., Zakaullah M. [2007], Glow Discharge Plasma Nitriding of AISI 304 Stainless Steel, „Plasma Science and Technology", vol. 9, nr 4. DOI: https://doi.org/10.1088/1009-0630/9/4/18
Rehani B.R., Joshi P.B., Lad K.N., Pratap A. [2006], Crystallite Size Estimation of Elemental and Composite Silver Nano-powders Using XRD Principles, „Indian Journal of Pure & Applied Physics", vol. 44.
Riviére J.P., Brin C., Villain J.P. [2003], Structure and Topography Modifications of Austenitic Steel Surfaces after Friction in Sliding Contact, „Applied Physics A Materials Science & Processing", vol. 76. DOI: https://doi.org/10.1007/s00339-002-1481-x
Surkialiabed R., Hedayati A., Saheb Alam A. [2013], Monitoring of Martensitic Transformation in Cold-Rolled 304L Austenitic Stainless Steel by Eddy Current Method, http://www.ndt.net/article/ndtnet/2013/58_Surkialiabad.pdf (dostęp: październik 2013).
Tavares S.S.M., Lafuente A., Miraglia S., Fruchart S. [2002], X-ray Diffraction and Magnetic Analysis of Deformation Induced Martensites in a Fe-17Mn-1.9Al-0.1C Steel, „Journal of Materials Science", vol. 37, iss. 8.
Wang H.S., Yang J.R., Bhadeshia H.K.D.H. [2005], Characterisation of Severely Deformed Austenitic Stainless Steel Wire, „Materials Science and Technology", vol. 21. DOI: https://doi.org/10.1179/174328405X63980