Neural Models for Predicting the Prices of Consumption Wheat on a Decentralised Commodity Market
DOI:
https://doi.org/10.15678/ZNUEK.2014.0935.1107Keywords:
artificial neural networks, forecasting prices, Forex, wheatAbstract
The aim of the study was to investigate the possibility of generating and using neural models for predicting the lowest and highest daily rates of consumption wheat in the Forex market. Input parameters and prepared learning sets of neural network are analysed with a view to generating neural models. After the artificial neural networks were generated, a sensitivity analysis was done and the learning set rebuilt. The set data required to properly forecast prices were added to the new training.
Downloads
References
Galant M., Dolan M. [2007], Currency Trading for Dummies, Wiley Publishing, Hoboken.
Worrachate A., Goodman D. [2012], Currency Trading at $5 Trillion a Day Surpassed Pre-Lehman High, BIS Says, Bloomberg.
Dominiak J. [2012], Forex urywa ręce, Wyborcza.biz (data dostępu: 10.11.2012).
Domaradzki R. [2007], Zastosowanie sieci neuronowych do wspomagania decyzji inwestycyjnych, Praca doktorska, Akademia Górniczo-Hutnicza w Krakowie, Kraków.
Frydrychowicz W., Szymańska K. [2008], Zagadnienie sztucznych sieci neuronowych w dynamicznych procesach niestandardowej ekonomii, Scientific Bulletin of Chełm Section of Mathematics and Computer Sience, nr 1.
Karpuś P., Węsławski J. [2009], Rynek finansowy w erze zawirowań, UMCS w Lublinie, Lublin.
Pring M. [2010], Analiza techniczna dla inwestorów krótkoterminowych, Grube Ryby.
Matinez J. [2012], 10 fundamentalnych zasad na rynku Forex. Strategie osiągania zysku, Onepress.
Kochan K. [2009], Forex w praktyce. Vademecum inwestora walutowego, Onepress.
Wyrozumski T. [2005], Sieci neuronowe a energetyka - prawdy i mity o prognozowaniu [w:] Rynek energii elektrycznej: bezpieczeństwo energetyczne Polski w strukturze Unii Europejskiej, Materiały XI Konferencji Naukowo-Technicznej, t. II, Wydawnictwo Politechniki Lubelskiej, Lublin.
Zieliński G. [2010], Wykorzystanie sztucznych sieci neuronowych do prognozowania upadłości przedsiębiorstw, Wyższa Szkoła Zarządzania i Administracji w Zamościu, Publikacje Koła Metod Sztucznej Inteligencji, http://student.wszia.edu.pl/~msi/?m=pu (data dostępu: 10.05.2012).
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Cracow Review of Economics and Management
This work is licensed under a Creative Commons Attribution 4.0 International License.