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Abstract

Knowledge of the number of different kinds of enterprises that will be created in
a coming year is essential information. It can be used in macroeconomic analyses and as
a constituent of the background for economic policy.

From a demographics point of view, we consider the creation (birth) of some enter-
prise as a basic indicator. It can also be approached from the point of view of inference,
as the creation of enterprise is influenced by a wide variety of inputs. Enterprise creation
may therefore be thought of as a random process.

The analytic tools Bayesian statistics provide make it possible involve more kinds
of information into statistical analysis and gradually update the parameter estimations.
We used the conjugate family Poisson/gamma to estimate the number of enterprises to be
created in a coming year. The considerations were concerned with the mean square error,
which was used as the main criterion of the point estimation quality. We solved two kinds
of problems: to find a Bayesian point estimation that has a smaller mean square error than
the classical one in a predetermined interval, and, along with it, to model prior informa-
tion in a very simple way.

In finding some connection among the variables contained in the conjugate family
Poisson/gamma, we solved both presented problems and also developed a simple algo-

* The article was written within the project VEGA no. 1/0501/14 entitled “Business in Terms
of Demography — an Instrument for Assessing Changes in Growth and Employment Enterprise”.
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rithm for optimal point estimation of the Poisson distribution parameter. This algorithm
was used to estimate the number of enterprises created.

Keywords: Bayesian point estimation, mean square error, conjugate family, prior distribu-
tion, posterior distribution, number of enterprise births.

1. Introduction

The Bayesian approach is very useful in statistical analysis whenever there is
a lack of reliable information. Statistical inference is a suitable tool for solving
problems when the random sample is large enough, so that the inference conclu-
sions derived from the information provided by it are credible. Sometimes, along
with the random sample, other information is available about a particular indicator
or estimated parameter we are dealing with; in such cases it is advisable to use the
Bayesian approach, which enables techniques and algorithms for including two
(or more) sources of information into a statistical analysis. Employing more infor-
mation leads to more qualitative and more credible conclusions. The fundamental
advantage of using the Bayesian approach is that it yields more precise results:
point estimation has better properties and a narrower confidence interval.

The main disadvantage of the Bayesian approach, on the other hand, is that it
is based on more difficult mathematics. That is probably the main reason it is not
used in practice as widely as might be desirable. One field that does use it is the
insurance industry, particularly to estimate insurance event probability, the number
of insurance events and the average insurance cover (Pacdkova 2004). The empir-
ical credible theory was developed on the basis of Bayesian theory (Soltés 2009).

This article examines the point estimation of the number of enterprises that are
going to be established in some future period of time. The enterprises are catego-
rised by type of economic activity they engage in and their number of employees.
The process of creating an enterprise is influenced by a wide variety of factors, so
it may be considered a random event. The number of enterprises that are going to
be established in the next year is an indicator worth estimating.

The purpose of the article is to introduce the original approach of creating
Bayesian point estimation and to apply an algorithm developed to estimate the
number of enterprise births.

2. The Principle of Bayesian Statistics

Bayesian statistics connect and utilise two kinds of information: random sample
and, along with it, prior information (Lee 2012) which comes from another source.
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In comparison with classical statistical inference, Bayesian statistics requires
more rigorous mathematics and is characterised by a higher level of abstraction.
The estimated parameter is considered a random variable, the distribution of which
is updated by including the data that arises from a random sample. The prior infor-
mation, which is usually available before the data from a survey, is created by
so-called prior distribution. Including the data from random sampling leads to the
posterior distribution, on the basis of which the inference conclusions are made.

As the posterior distributions’ variance is smaller than both the sample vari-
ance and the prior variance, the confidence intervals obtained are narrower than
those the classical approach yields. The difference between the ranges is consider-
able, especially when the posterior density is not symmetric — the highest posterior
density region, which is used in Bayesian statistics for interval estimation, is much
more precise (Bernardo & Smith 2000, Bolstad 2004, Garthwaite, Jolliffe & Jones
2002).

The theory of Bayesian statistics is based on Bayes’ theorem, the continuous
form of which is written:

fx ‘ 0) fo(0)
Jo(0]x)= , (M
J 71x[0) Jo(8)d0

(S}
where:
fo (8) denotes the prior density of the estimated parameter ©,

fo (6| x) denotes the posterior density of ©,
f(x | 6) denotes the likelihood function.

The connections among the distributions, along with some other information,
are derived from the simplified form of Bayes’ theorem, in which the equation is
substituted with the proportion:

fo(8]x)oc f(x]0) /o (0). @

When the prior and the posterior are of the same type, they are called conju-
gated distribution in relation to the sample distribution. The three distributions
(prior, posterior and sample) create what is called a conjugate family'. Here the
definition of posterior is very simple as formulas exist for evaluating the poste-
riors’ parameters (the values of prior parameters and some sample characteristics
are substituted).

In practice, three conjugated families are commonly used (Kotlebova 2009,
Pacakova et al. 2012):

! In (Weerahandi 1995) it is called “natural conjugate family of distributions for the distribu-
tion of variable X”.
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— binomial/beta — for estimating the binomial proportion ,

— Poisson/gamma — for estimating the Poisson mean A,

— Normal/normal — for estimating the normal mean .

The Bayesian point estimation of some parameter © is usually the posterior
mean, but sometimes (depending on the type of loss function) it may be the distri-
bution’s median or mode, too (Pacakova 2004).

In this article, we take a detailed look at the second of the listed conjugated
families. It was used to estimate the number of enterprises to be created, depending
on their activities and number of employees.

In conjugate family Poisson/gamma, the sample distribution is Poisson distri-
bution, and the prior distribution of its parameter A is gamma distribution G(a.; f3).

Then the posterior of A (denoted A/X) is gamma distribution G(a; B'), too.

n

The parameters o'; B’ satisfy: o' = o + > x;, while B'=P+nx,x,,....x )=xXis
i=1

random sample data (Kotlebova 2009).

We adopted the mean square error as the criterion for the point estimation
quality. A similar theory was developed for the conjugated family binomial/beta
(see Kotlebovd & Laska 2014a, 2014b for possible applications).

3. Properties of the Point Estimations — The Mean Square Error

The point estimation of a distribution parameter 0 is the sample characteristic
Un (est® = U ), which satisfies certain conditions. It has to be:

— unbiased — its mean must be equal to the estimated parameter (E(U, ) = ©);

— consistent — increasing the sample size makes the estimation more precise (its
value is closer to the estimated parameter);

— efficient — its variance is the smallest among the variances of all unbiased
estimators?.

Among these properties, primacy is afforded the first, as it is the necessary
condition for efficiency (consistency, too, is somewhat dependent). If the estimator
is only slightly biased, it cannot be efficient, too. Thus, an estimator with large
variance may be preferred against a slightly biased estimator with low variance —
it is obvious that a little bias is better than huge variance in the unbiased estimator.

The sensible way to fairly take into account both properties is to consider the
mean square error — the sum of variance and the square of bias (Wonnacott &
Wonnacott 1990):

2 In addition to these properties, sufficiency and robustness are usually presented (Pacdkovd
et al.2012).
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MSE(U,)=E[(®0-U,\]=D(U,)+A;, ©)

where D(U ) is the variance of U and A, = E(U,) - © is the bias.

According to this criterion, the better estimator is the one with the smaller
mean square error. We were looking for the Bayesian point estimator with smaller
mean square error in comparison with the classical point estimation. Along with it,
we developed an algorithm that optimally determines the prior parameters’ values
based on a simple conception of parameter’s value.

Kotlebova and Laska (2014a, 2014) showed, for the conjugate family binomial/
beta, that if, according to the prior concept, the estimated parameter s is within
some particular interval, it is possible to create a prior distribution that will lead to
a posterior that gives a Bayesian point estimation with a smaller mean square error
than the classical point estimation just within this interval.

4. Bayesian Point Estimation of the Poisson Mean

As mentioned earlier, the conjugate family Poisson/gamma is convenient for
inference conclusions of the Poisson mean. In addition to being rather simple,
gamma distribution is flexible enough to shape a prior conception by setting
convenient parameter values.

To make the following considerations clear, we shall once again go over the
conjugate family we are to deal with:

If the sample distribution is Poisson distribution and the prior distribution
of parameter A is gamma distribution G(a; ), the posterior distribution is also

n
gamma distribution, with parameters: o’ =+ ) x;, B’ = + n.
i=1

1=
The classical point estimation of parameter A is the sample mean: esth =x, an
unbiased estimator whose mean square error takes the form:

MSE(X)=D(X)+0= » @)

-

(Considering n as a constant, we may think of the mean square error as a linear
function of independent variable A).

Bayesian point estimation of A (denoted by Aj) is the posterior distributions’

n
G(a + x5 P+ n) mean:
i=1

a+nx
B+n -

hp=E(h/x)= )

To express the mean square error of the Bayesian point estimation, we need its
variance and (potential) bias.
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The posterior mean (Bayesian point estimation) may be expressed as follows:

E(hy)= [E )+nE(X)]= ‘“”xﬂ ©6)

It is obvious that the estimator is not unbiased. The blas is:
a+nh ., o-PAr

Brn = Ben - 0
The variance of the Bayesian point estimation is expressed as:
VR S 2~ )] nh
D(XB)_(|3+n)2[D(a)+n D(X)]_([3+ o7 7[0+nk]= Ben? ®)

nh
(B+n)
classical point estimation of A).

Thus, the mean square error may be expressed as follows:

1 1
(B+n) (B+n)
Considering this expression as a function of variable A, it should be recognised
as a convex quadratic function, which when graphed does not intersect the x axis.

We were looking for an interval within which the mean square error of the
Bayesian point estimation is smaller than the mean square error of the classical

A . . o .
(As 5 <7 » the Bayesian point estimation has a smaller variance than the

MSE(\p) = [(0—BA) +mh]= [B* A2+ h(n-20B)+0?]. (9

point estimation. If, theoretically, the prior mean equalled A <7» = E) the required
condition would be satisfied:

1
(B+n)

2
o n

" Bn (B+n) “PBn (
But this assumption is made up expressly to show that: If there exists some point
in which the graph of quadratic function is below the graph of the linear function,
there must exist some interval (containing the point) (7» 7\2) within which the
condition ( MSE (7\ 3) < MSE (X)) is also satisfied.

We tried to find some connection between the interval and the prior distribu-
tion. The goal was to determine such values of the prior distributions’ parameters
which would lead to the Bayesian point estimation with the smaller mean square
error (compared to classical point estimation) just at interval (}\1; )»2).

To find the connection between the variables listed, the following system of
equations must be solved:

no

' <°‘_ﬁ%)2+”% TB(B+ny
MSE(X )fork=%>.

MSE(N)=

(10)

A
[(a=PBh, )+ 0, | =, an

I
(B+ny
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A
B:n)z [(0— Bro) + g ] =52 (12)

—~

The solution is:

4n[n(hi+20a) 112807 kg 2n[n(hi+Dhg) 1]+ 4n° ﬁ
BlZ:z[ 2 2 =72 (13)
n® (M= Y =2n(hy+hy)+1] 7 [07 (hy =N P =2n(N +hy)+1]°

= Bk +h)—B—2n]. (14)

As can be seen, there are two solutions, but only one of them solves the problem:
if in the expression for 3 we choose the possibility “~”, then variable o is negative.
So, the prior parameters are these:

2n[n(hy +hy)—1]+4n% YA N,
TR (=AY =2n(h + ) +1]°

o= [Bn(hy+ )~ B 2n]. (16)

The result we arrived at is well applicable in practice, as finding the optimal
prior is one weakness of the Bayesian approach. Usually, the mean can be evalu-
ated quite exactly, but visualising variance is not so simple. (If we were sure of the

values of both parameters, we would determine the prior parameters by solving

this system of equations: E(\)= %; D(N)= %).

More simply, the prior concept would be expressed by borders between which
the estimated parameter is placed. That means that there exists an interval (A; \,)
containing A according to a prior belief. Such a concept may be expressed by
anybody (it is not necessary to understand the principle of Bayesian statistics).

Thus, if we knew the borders of the interval containing the estimated param-
eter, using (15) and (16) we would evaluate parameters of such prior distribution
so that the Bayesian point estimation based on it would be superior to the classical
one in terms of the smaller mean square error.

Here is an example: Take for the variables the values n = 20, A, = 6, A, = 10.
Substituting these into (15) and (16) would yield the prior distributions parameters:
o = 33.820263, 3 = 4.366177. Meanwhile, the mean square errors of classical and
Bayesian estimation may be expressed as functions according to (4) and (9):

(15)

A A
MSE(M) =5 =75
Py L a2y _ 2
MSE(XB)—(B+n)2[[:’> A2+ h(n—20B)+0’]=
=m~[4,3661772%2+k(20—2‘33,820263-4,366177)+33,8202632]=

=0,032109- A% — 0463745 A +1,924537.
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The functions are graphed in Fig. 1. We concentrated on the values A of placed in
interval <5; 11 >

As can be seen, the intersections of the graphs are in [6; 0.3] and [10; 0.5].
At interval (6; 10) the inequation MSE (X B) < MSE (f( ) is valid, outside of interval
the reverse inequality is satisfied.

For the three particular values n = 20, 7\1 =0, 7\2 = 10 (according to (15) and
(16)) the prior distributions’ parameters were determined in a way that led to the
Bayesian point estimation with the smaller mean square error just at interval
(6; 10).

The part of interv;;ll (A;; A,) in which the Bayesian point estimation is placed
depends on variable Y x;, which is evaluated from the sample data. (It may some-

i=l
times occur that if the sample mean is outside of interval (kl; )\2), the Bayesian
point estimation is, too. This would indicate that the prior concept is far from
reality).

Mean Square Error
0.7
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04 —
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Fig. 1. A Comparing of the Graphs of the Classical and the Bayesian Mean Square Error
Source: the authors’ calculations.

The relations mentioned above allowed us to design an algorithm that would
determine the qualitative Bayesian point estimation of Poisson mean A on the basis
of the simple prior concept:

1) determining the borders of interval (A; A,), within which parameter A has
to be situated;
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2) evaluating the prior distributions’ parameters a., 3 according to the formulas

2”[”(}\.1 + }\.2) —1]+4n2 4y )\.1 )\.2

T (o= h P =20 (0 + ) 1]

= B (hy +ha)— B 2n];

3) on the basis of observed sample data, evaluating the Bayesian point estima-
tion of A:

= E(/x)= 50

We applied the introduced algorithm to estimate the number of enterprises which
are going to be created in Slovakia.

5. Estimating the Number of Different Enterprises
(according to NACE) Created in the Next Year in Slovakia

Creating an enterprise may be considered a basic demographic event: a birth.
However, since this creation is influenced by a wide range of factors, it may also
be considered a random event. The number of such events may be modelled by
Poisson distribution, which is widely used to estimate the number of insurance
events. To estimate the mean of the distribution A, we had enough information to
use the Bayesian approach. Thus, the conjugate family Poisson/gamma was appro-
priate. In the SLOVSTAT database, the data on creating enterprises according to
NACE classification is available for the years 2008 to 2011. The former classifi-
cation (OKEé) contains data for the years 2000—2007. Some kinds of economic
activity are covered by both classifications. They are listed in Table 1.

Table 1. List of Economic Activities Covered by Both the OKEC and NACE Databases

Code of Activity . o
OKEC NACE Economic Activity
C B Mining and quarrying
D C Manufacturing
F F Construction
H I Accommodation and food service activities
J K Financial and insurance activities
K L Real estate activities
M P Education

Source: www.statistics.sk/pls/wregis/ciselniky?kc=5205, accessed: July 2014.
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For activities listed in Table 1, the longer time series (2000—2011) may be used,
while for others only data since 2008 can be used.

Table 2 lists the enterprise births in the SR by economic activity and size class
category by number of employees (the period 2000-2011).

Using the data, and the algorithm we have introduced, we estimated the
number of enterprise births for the next year 2012. The prior information was
created very simply: the minimum number in the whole time series was used as
the low border )\1, while the maximum was the second border )\2. Done in Excel,
the calculations can be found in Table 3.

The values calculated and listed in the individual columns in Table 3 corre-
spond to the algorithm described at the end of the previous section. As may be
seen from the calculations, Bayesian point estimation is a number within the
interval (A; A,). The longer the available time series, the more precise the esti-
mation will be. In other words, more information improves the quality of the
estimation.

6. Conclusions

This article has presented the potentialities of using Bayesian statistics in
analyses of the basic indicator in enterprise demography. Inference methods are
applied mostly for data taken from a random survey. However, when the event
(enterprise birth) is influenced by a number of factors, we may consider it to be
a random event and approach it from this point of view.

Bayesian statistics provides an effective tool for sequentially updating some
indicators. In the contribution, we have examined the estimation of enterprise
births by means of Poisson distribution mean. We used the SLOVSTAT database,
which contains the enterprise births in the SR by economic activity and size class
by number of employees listed for the years 2000 to 2011.

Although we achieved some factual results, including an estimation of enter-
prise births for the next period, the value here is mainly theoretical: as a quality
criterion of point estimation, we used the mean square error, which we sought
to minimise. We examined the connection between a variety of variables within
the frame of a conjugate family Poisson/gamma and we succeeded in creating an
algorithm that would evaluate the Bayesian point estimation, which has a smaller
mean square error than its classical counterpart within the predetermined interval.
We consider the ability to create the prior distribution in a very simple way to
be important and useful knowledge — it suffices to determine the borders of an
interval, within which the estimated parameter has to be placed.
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The algorithm we developed was illustrated with an example in which the
number of enterprise births was estimated on the basis of data from previous
periods.
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Zastosowanie metod statystyki bayesowskiej w demografii przedsigbiorstw
(Streszczenie)

Znajomos¢ liczby przedsiebiorstw réznego typu, ktérych utworzenie jest plano-
wane w najblizszym roku, stanowi istotng informacje, ktéra moze zosta¢ wykorzystana
w aspekcie makroekonomicznym, a takze moze stanowi¢ podstawe do kreowania polityki
ekonomiczne;j.

Z demograficznego punktu widzenia podstawowym przedmiotem rozwazan jest
powstanie przedsiebiorstwa. Mozliwe jest réwniez podejScie nawigzujace do zasad wnio-
skowania statystycznego, gdyz na tworzenie przedsiebiorstw oddziatuja liczne i zréznico-
wane czynniki, co daje podstawy do postrzegania tego procesu jako losowego.

Metody analityczne statystyki bayesowskiej daja mozliwo$¢ uwzglednienia w procesie
badania wiekszej iloSci informacji oraz stopniowej korekty oszacowania danego parametru.

Do oszacowania liczby planowanych do utworzenia przedsigbiorstw wykorzystano
rodzing rozktadéw sprz¢zonych Poisson-gamma. Niezbedne rozwazania oparte zostaly
na btedzie Sredniokwadratowym, przyjetym jako gtéwne kryterium oceny jakosci doko-
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nanej estymacji punktowej. W artykule przedstawiono rozwigzania dwdch problemoéw
badawczych: poszukiwania takiego estymatora bayesowskiego, ktéry ma mniejszy btad
Sredniokwadratowy w poréwnaniu z ujeciem klasycznym dla z géry okres§lonego prze-
dziatu, oraz przejrzystego sposobu modelowania rozktadéw a priori.

Dzigki zidentyfikowaniu pewnych powigzan pomigdzy zmiennymi opisywanymi
mieszankami rozktadéw z rodziny Poisson-gamma mozliwe stato si¢ rozwigzanie obu
wyzej sformutowanych probleméw oraz zbudowanie prostego algorytmu optymalne;j
estymacji punktowej parametru rozktadu Poissona. Algorytm ten zostat wykorzystany do
oszacowania liczby nowo tworzonych przedsigbiorstw.

Stowa kluczowe: bayesowska estymacja punktowa, btad sredniokwadratowy, rozktady
sprzezone, rozklad a priori, rozktad a posteriori, liczba tworzonych przedsigbiorstw.



