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Abstract

The main goal of this article was to review and analyse basic control charts, which can 
be used to accept or disqualify an analysed production process. There are two kinds of 
acceptance control charts: Shewhart and cumulative sum (CUSUM charts). Both can be 
used by quality managers or financial managers in process monitoring or auditing.

Only selected process control procedures are presented in this article. Other algorithms 
can be found in the cited literature or developed by listed schemes. The article focuses 
also on the strengths and weaknesses of the proposed solutions, and provides examples of 
their use. 

Keywords: quality control, acceptance control charts, cumulative sum control charts, 
statistical process control.

1. Introduction

Literature devoted to quality management or process control presents numerous 
tools used to monitor the course of production processes. Tools known as control 
charts play the major role here.

The elementary characteristic of all tools described as control charts is their 
ability to register, process and analyse source data which describes the process 
status. This analysis is aimed at detecting systematic (non-random) changes in the 
process, which result in the emission of a proper signal on process status. 

This article reviews and analyses elementary control charts, which enable the  
acceptance or disqualification of the examined production process. Due to 
the limited size of this paper, only selected examples of control procedures will be 
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illustrated. Other algorithms of functioning can be found in the quoted literature 
or elaborated according to the presented schemes. The article also looks at the 
strengths and weaknesses of the proposed solutions and demonstrates the ways 
they can be used.

2. Classification of Control Charts 

Control charts can be classified in various ways, depending on different 
factors. Considering the number of criteria assessed when monitoring the 
process, univariate and multivariate charts can be distinguished. Univariate 
charts include charts constructed for single criteria quality assessment (single 
diagnostic variables) and charts using synthetic (aggregate) quality characteristics. 
A synthetic quality characteristic should be understood as a univariate synthetic 
diagnostic variable which aggregates all partial criteria of process evaluation. 
Multivariate charts should also be treated as including, for example, Hotelling’s 
control charts (T2) (see Hotelling 1947).

If one takes the theoretical conditions at work behind control charts as 
a criterion of division, then the group of Shewhart control charts and the group 
of cumulative sum control charts can be included. The former was the idea of 
Walter Andrew Shewhart (1891–1967), who formulated the foundations of control 
procedures based on the classical theory of statistical hypothesis testing in 1924, 
while he worked for the Western Electric Company, which manufactured telephone 
equipment for Bell Telephone1. Cumulative sum control charts are derived from 
the works of Abraham Wald (1902–1950) and are devoted to sequential analysis 
(see for example Wald 1945, 1947), which is an alternative to the classical theory 
of hypothesis verification. 

Yet another criterion of the division of control charts that is important for this 
article is the possibility of process acceptance. This is related to the emission 
of a proper signal on the status of the monitored process. In their original 
construction, classical control charts (both Shewhart and cumulative sum) only 
allowed for a signal to be emitting, suggesting that the process is maladjusted. 
Such a signal resulted in the generation of feedback and the cycle of proper 
activities aimed at restoring the desired status. The issue of generating the signal 
that would suggest that the process is adjusted was less important. Over time, there 
appeared a need for process acceptance, which entailed the relevant modification 
of classical control charts.

1 The concept of classical procedures of statistical hypothesis testing should be understood as 
procedures proposed by Jerzy Spława-Nayman and Egon Pearson.
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 Such modifications concerned both Shewhart control charts (see Iwasiewicz 
1985, pp. 57–86, 159–163; 1999, pp. 239–242; 2001, pp. 35–48; see also the 
standard PN-ISO 7966: 2001), and cumulative sum control charts (see Major 1997, 
pp. 47–54; Iwasiewicz 2008–2009; 2011, pp. 213–245; Major 2015, pp. 223–238).

 New charts enable the disqualification or acceptance of the process being 
examined. The possibility of process acceptance becomes very important for the 
broadly understood process of company management; a control chart of this type 
is an important tool in the hands of a quality manager or financial manager.

3. Process Analysis Based on Shewhart Control Charts 

These charts belong to the earliest and probably best known tools for the 
statistical control of production processes. They are simple overview diagrammes 
which make it possible to determine quickly whether a given process has been 
destabilised. They owe their popularity and recognition among engineers, 
controllers and academics mainly to their simplicity and the lack of the need to 
use advanced computational techniques. This was particularly important in the 
1920s when there were no computers or calculators and a control chart could be 
made with no more than a sheet of paper and a pencil. Today, in the era of the 
Internet and advanced computerisation, the graphic form of Shewhart procedures 
is reduced to a role auxiliary to numeric form. Currently, Shewhart control charts 
are seen from the perspective of mathematical statistics, or, to be more precise, the 
theory of significance tests. Such a chart can be defined as a sequence of relevant 
significance tests. As a result, just as with significance testing, in Shewhart control 
charts it is assumed that a Type I (a) error can be committed – it is referred to as 
the risk of excessive process adjustment. In the classical control chart one does 
not define explicite the likelihood of making Type II (b) error, which renders 
it impossible to make a decision on accepting the monitored process. However, 
it can only be stated that there are no reasons for rejecting the zero hypothesis that 
the process is adjusted. Obviously, each standard Shewhart control chart can be 
properly modified so that it would be possible to take a decision to either accept or 
disqualify the process.

In order to illustrate these possibilities, we should focus on the case when 
during process x – the mean chart is used and it functions with the bilateral 
control scheme. It can be assumed that the values of diagnostic variable X with 
a distribution similar to normal and with constant and known standard deviation 
s are observed.

In this case, the second of the distribution parameters – the expected value – is 
the subject of verification. In the standard control procedure (with the bilateral 
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control scheme), in the subsequent observation points of the process t = 1, 2, 3, …, 
a null hypothesis of the following form is used:

 H0: mt = m0, (1)

in contrast to the alternative hypothesis:

 H1: mt ≠ m0, (2)

where mt is the expected value in period t, while m0 = x0 is the target value 
(nominal, most desired).

The observed characteristic from the sample is the arithmetic mean of the 
following form:

 .x n
x

t

ti
i

n

1= =r

/
 (3)

It is assumed that the size of the examined sample taken for examination in 
each period t is constant and amounts to n. The values of characteristics from 
the sample are placed on the overview diagramme and compared to the levels of 
control limits determined according to the following formulas:
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$
σ= + αr  (4)

 ,x x u
n

–l 0 2
$
σ= αr  (5)

 ,x x0 0=r  (6)

where xur  is the upper control limit, xlr  is the lower control limit, x0r  is the centre 
line, while u

2
a  is the quantile of standard normal random variable U ~ N(0, 1) 

which fulfills the following condition:

 P(U > u
2
a) = 2

a .  (7)

A point signal on process maladjustment2 is emitted – with the probability of 
a a error – then the following condition is met:

 .orx x x xt l t u1 2r r r r  (8)

2 The procedure described here refers to the simplest situation when the point signal of process 
maladjustment is generated. The emission of serial signals on maladjustment and warning signals 
or signals from combined samples is also possible (more – see Iwasiewicz 1985, pp. 108–113; 
PN-ISO 8258+AC1: 1996).
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In other cases, it is said that there are no grounds for rejecting the null 
hypothesis, which is not equivalent to an unambiguous process acceptance.

The above chart may be modified so that a null hypothesis with the proper 
error risk (b) could be assumed. 

Then, an alternative hypothesis is also modified (2). It can be substituted by 
two alternative hypotheses in the following form (after Iwasiewicz 2001, p. 240):

 H–1: mt = x0 – Dm = m–1, (9)

 H1: mt = x0 + Dm = m1, (10)

whereas Dm > 0, H–1 and H1 stand for the left-tailed and right-tailed hypotheses.

With the values m–1 and m1, the location of control lines ( andx xl ur r ) is determined 
at such a level that:

 ,andxP x x P x x2 2< >t tt l t l0 1–μ
α

μ μ
β= == =r r r r^ ^h h  (11)

and simultaneously:

 .andxP x x P x x2 2> <t tt u t u0 1μ
α

μ μ
β= == =r r r r^ ^h h  (12)

The lower and upper control limits are determined according to the same 
formulas (4) and (5), but with the assumption that the minimum size of the sample 
(n = n*) which guarantees that conditions (11) and (12) are met should amount to 
at least3:
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Formula (13) was created as a result of a solution to n system of equations that 
describes the location of line xur  (after Iwasiewicz 1999, p. 240; 2001, pp. 40–41):
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where:
 m1 = x0 + Dm. (15)

The decision rules are as follows. 

3 See (Iwasiewicz 1999, p. 240). Cf. (Iwasiewicz 1985, p. 70; PN-ISO 7966: 2001, p. 9).
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If:

 ,x x xul t ##r r r  (16)

then the course of the process is accepted and the likelihood of a random event is 
such that the process maladjustment reaches or exceeds Dm, but does not exceed b.

However, if:

 ,orx x x xt l t u1 2r r r r  (17)

it is assumed that the maladjustment of the monitored process has reached Dm 
value and the probability of a random event of the actual adjustment of the process 
(m = x0) does not exceed a.

In the case of the one-sided control schemes in formulas (13) and (14), 2
a  and 2

b   
should be substituted by a and b. Decision-making will also look different. Then, 
the process should be considered adjusted if: x xt l$r r  for the left-sided scheme and 
x xt u#r r  for the right-sided scheme. The signal on process maladjustment is sent 
when: x x<t lr r  for the left-sided scheme and when: x x>t ur r  for the right-sided one. 

The relevant nomograms or numerical procedures used when designing process 
acceptance charts can be found in the standards (see PN-ISO 7966: 2001). Along 
with the determination of the minimum size of the sample, they make it possible to 
determine other chart parameters like m–1 and m0 in combination with the highest 
permitted defectiveness level p0 and the lowest disqualifying defectiveness p1, as 
well as tolerance range boundaries. Values m–1 and m0 may also be determined 
based on substantive conditions and knowledge of the technological process.

4. Analysis of the Process Based on Classical Sequential  
Procedures 

The procedures enable both the acceptance and the disqualification of the 
process being examined. They are based on sequential probability ratio tests and, 
more broadly, on the sequential analysis mentioned above. 

The theory of sequential analysis involves random sampling of single or small 
sets of statistical populations and the determination each time of whether the 
information resources obtained to that point allow for a specific decision to be 
made. With the formulated null hypothesis H0 and alternative hypothesis H1, such 
decisions may concern:

– the adoption of H0 hypothesis,
– the rejection of H0 hypothesis and the adoption of H1 hypothesis,
– the postponement of the decision until the next unit (sample n) is taken for 

sample m.
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In this view, sample m is the sum of all samples n collected in subsequent steps 
k – that is:

 m = n1 + n2 + … + nk. (18)

If in each k-th sampling interval the sample size is one, then the size of the 
whole cumulative sample will be k (m = k).

As previously, the considerations were reduced to the case when the diagnostic 
variable X has the normal distribution of the expected value m and known standard 
deviation s (X ~ N(m,s)). Similarly as before, it was assumed that the control 
concerned the expected value m. Due to the limited size of the paper, the analysis 
was narrowed down this time to the situation when the tolerance interval was 
right-hand limited4. 

The observed characteristic from the sample is the sum of the realisation of 
the tested diagnostic variable in subsequent steps of the sequential test. With the 
assumption that in each step of the sequential analysis there is only one realisation 
of the random variable available, the characteristic from the sample will take the 
following form: 

 , , , ,z x n 1 2 …n i
i

n

1
= =

=
/  (19)

where xi is the realisation of diagnostic variable X in subsequent steps of the 
sequential procedure.

The verified null hypothesis takes the form (1) while the alternative one has the 
form (10). Between the values m0 and m1 there is relation m0 < m1.

The examined stochastic process is said to be adjusted and the product to 
comply with quality requirements when the following dependency is fulfilled:  
m ≤ m0. When m ≥ m1, it is said that the process is not adjusted and the product does 
not fulfill quality requirements. When m0 < m < m1, one of the two decisions should 
be postponed until more information is obtained.

One of the two above decisions is made with the assumed risk of error a and 
b, where:

a is the probability that hypothesis H1 will be adopted when H0 is true, and
b is the probability that hypothesis H0 will be adopted when H1 is true.
During the verification, sequential testing in the following form is used 

(Iwasiewicz, Paszek & Steczkowski 1988, p. 46):

4 An extensive description of other cases can be found, for example, in the paper (Iwasiewicz, 
Paszek & Steczkowski 1988).
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which is the quotient of two reliability functions formulated for cases when m = m1 
and m = m0. Parameters 1 – a and 1 – b complement a and b, and they respectively 
stand for: the probability of adopting H0 hypothesis when it is true (1 – a) and the 
probability of adopting H1 hypothesis when it is true (1 – b).

continue testing 

assume H1

assume H0

n 

zu, nzn

zl, n

Fig. 1. Overview Diagramme Used in the Sequential Procedure of Testing Hypothesis 
H0: m = m0, against hypothesis H1: m = m1
Source: the author’s study.

When transforming formula (20) in relation to statistics zn in the form of (19), 
we obtain:
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 Inequality (21) can also be written in the following form:

 zl,n = a + cn < zn < zu,n = b + cn, (22)

where:
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The rules of the procedure are as follows:
If in any step of the test the following inequality is fulfilled: zn < zl,n, then H0 

hypothesis is assumed (and the examined process is adjusted) as is the probability 
of H1 hypothesis being true and not exceeding b. If the following inequality is true: 
zn > zu,n, then H1 hypothesis is assumed (and the examined process is maladjusted) 
as is the probability of H0 hypothesis being true and not exceeding a. Whereas: if 
zl, n ≤ zn ≤ zu, n, there are no grounds for adopting any of the hypotheses and testing 
should be continued with the size of the sample increased by one and parameters 
zl, n, zu, n and zn calculated again. The calculated values zn can also be analysed in 
a graphic form with the use of the diagramme presented in Fig. 1.

5. Classical Procedure of Cumulative Sums

The rule of the functioning of these control charts was discussed based on the 
assumption from the previous paragraph that the expected value of the diagnostic 
variable with normal distribution, with fixed and known standard deviation, was 
verified. Furthermore, the assumption of right-sided limit to the tolerance interval 
remains.

When constructing the procedure of cumulative sums, it is assumed that the 
risk of Type II error b = 0. As a result, the region of test continuation is combined 
with the area where hypothesis H0 was assumed, so the number of possible 
decisions is reduced to two. The whole technique behind the procedure is based 
on the assumption that the procedure of cumulative sums is a classical backward 
sequential procedure. This forces the drafting of an auxiliary coordinate system 
in each point ending a given sequence, rotated by 180o in relation to the original 
position. An example of such a graph is presented in Fig. 2.

In each n-th step of the procedure it is verified if the sequence z xn ii
n
1= =/  observed to that point is sufficient for adopting hypothesis H1 (determination that 

the process is maladjusted).
For the greater convenience of this method, a mask is created and moved on 

the graph with the increase in the length of the examined sequence. An example of 
such a mask is presented in Fig. 3. 

In order to construct a mask, several parameters must be known, including 
edges d and h and angle j, which is an inclination angle of an active edge of the 
mask to the abscissa of the system of coordinates turned by 180o.
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Fig. 2. Dependency between the Classical Procedure and the Procedure of Cumulative 
Sums
Source: the author’s study.
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Fig. 3. Classical Mask in the Control Scheme with the Right-sided Limit to the Tolerance 
Interval
Source: the author’s study. 

The value of parameter d is determined by calculating the zero of the equation 
of control line zg with the assumption that b = 0. Considering the fact that the 
parameters of the mask are determined in the coordinate system turned by 180o, 
it must be written:

 .lnd n 2 0– – –12 0
2

2
2

μ μ
σ α= =  (26)

,
nz
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The second of the mask parameters, the inclination of the active edge of the 
mask, may be determined using this formula:

 .arctgc arctg 2
0 1ϕ

μ μ= = +
 (27)

The last of the parameters of h mask is determined with this formula:

 h = dtgj = dc. (28)

The active control edge of the mask (segment BC in Fig. 3) and point D 
covering the last of the points of the observed sequence are most important in the 
mask. Another important rule is that the upper edge of mask DE should remain 
parallel to the abscissa n.

The rules of the procedure are as follows:
– if at least one point in sequence z0 … zn is below the active control edge (line) 

BC, then H1 hypothesis should be adopted (the process is maladjusted) with the 
error risk not exceeding a;

– if none of the sequence points lies below edge BC, then one should go to the 
next stage of the test and increase the cumulative sample by the next value xi.

In many cases, the use of the mask is quite problematic, especially when its 
parameters are expressed by high values. This inconvenience can be removed by 
substituting a classical graphic algorithm with a numerical algorithm. The rules 
are quite similar to the rules in Shewhart procedures while parameters found in 
the formulas are then designated similarly to the mask parameters.

If it is assumed that b = 0, the statistics zn can be replaced by z*
n statistics 

defined by the following formula:

 ,z x c–*
n ti

i

s

1
=

=
^ h/  (29)

where c = tgj, t is the current index, i is the operational index, and s is the highest 
value of operational index in a given moment (s = 1, 2, 3, …).

Double index it in formula (29) suggests the tests are conducted in two stages. 
Index t has functioned for the entire duration of tests while index i appears when 
the following dependency is met: xt – c > 0. The fulfillment of the above inequality 
is a necessary condition for starting the calculation of the value of statistic (29). 
The calculation of characteristic (29) is continued until one of the conditions below 
is met:

 10   , where ,z z z dc h*
n u u$ = =  (30)

 20   .z 0*
n #  (31)
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The value of parameter d is determined by calculating the zero of the equation 
of control line zg with the assumption that b = 0. Considering the fact that the 
parameters of the mask are determined in the coordinate system turned by 180o, 
it must be written:

 .lnd n 2 0– – –12 0
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,
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If condition 10 (30) is met, the test is concluded and alternative hypothesis H1 
is assumed with the risk of error not greater than a, whereas if condition 20 (31) is 
met, the calculation of the values of characteristic z*

n is discontinued and value 0 
is attributed to index i.

6. Modified Procedure of Cumulative Sums

The algorithms presented in the preceding point both in graphic and numeric 
form can be modified in such a way that the acceptance of the examined process 
would be possible. For this purpose, one should avoid combining process 
acceptance areas with the area of test continuation (see Fig. 1). In practice, this 
means that b > 0 and the mask will slightly change its structure. An example of 
such a mask is shown in Fig. 4. 

The mask now has two active edges (control lines), rather than one. If the lower 
line of the mask is exceeded in minus, this suggests the need to adopt hypothesis 
H1 (the process is maladjusted) with the error risk not greater than a. If the upper 
line of the mask is exceeded in plus, hypothesis H0 is assumed (the process is 
adjusted) with the error risk not greater than b. If points of the cumulative 
sequence are arranged in the corridor between the mask edges, then tests are 
continued with the sample increased by subsequent value xi. Mask parameters 
are determined according to rules similar to those for a classical procedure of 
cumulative sums, yet with one difference – the value of the b parameter is greater 
than zero. Currently, in order to build a mask, one needs (see Fig. 4) parameters d0, 
d1, h0, h1 and c = tgj.

Parameter d0 is obtained as a result of the transformation of the equation 
of the lower control limit zl,n of the classical sequential procedure (see Fig. 1). 
The transformation involves the determination of the zero n0 of function zl,n. 
Remembering that the mask functions in the coordinate system turned by 180o, 
the following can be written:

 
.

ln
d n

2 1 0– –
–

0 0
1
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0
2

2

1
μ μ

σ α
β

= =
 

(32)

The equation of parameter d1 is set similarly, but this time by transforming the 
upper control limit zu,n. In this way, we obtain the following formula:

 
.
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d
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–
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1
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2

2
μ μ
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=
 

(33)

The value of parameter j is determined according to formula (27), while 
parameters h0 and h1 are taken from the following formulas:
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The values of parameters h0, h1 and c are necessary during the construction 
of the process status numerical algorithm. This algorithm then proceeds like 
a standard procedure of cumulative sums. The difference is that one can 
distinguish two different process sequences: one leads to process acceptance 
(adoption of hypothesis H0) and the other to its disqualification (adoption of 
hypothesis H1). In both cases, the cumulative value of statistic z*

n in the form (29) 
is tested. Just like before, index t in formula (29) functions throughout the entire 
duration of tests while the moment of starting index i depends on the kind of point 
sequence used.
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Fig. 4. A Modified Mask in the Control Scheme with the Right-hand Tolerance Interval 
Limit
Source: the author’s study. 
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The analysis begins with the subtraction sign xt – c. When xt – c < 0, counter i 
is launched and a sequence begins which may lead to the adoption of hypothesis 
H0. The fact that the above inequality is met is a necessary condition for starting 
the calculation of statistic value (29). The calculation of this statistic is continued 
as long as one of the conditions below is met:

 1A   , where ,z z z d c h* * *
n l l 0 0# = =  (36)

 2A   .z 0*
n $  (37)

When condition 1A (36) is met, the test ends with the adoption of null 
hypothesis H0 with error risk not greater than b; when condition 2A (37) is 
fulfilled, the calculation of the value of characteristic z*

n is interrupted and one 
returns to tracking the subtraction sign xt – c. The fulfillment of conditions 1A (36) 
or 1B (37) also entails the need to bring index i (i = 0) to zero.

Index i may also be started when xt – c > 0. Then, it is the beginning of the 
second sequence which can lead to the adoption of alternative hypothesis H1 and 
the beginning of accumulation according to formula (29). Such accumulation lasts 
until one of the conditions below is met:

 1B   , ,wherez z z d c h* * *
n u u 1 1$ = =  (38)

 2B   .z 0*
n #  (39)

The fulfillment of condition 1B
 (38) results in the adoption of alternative 

hypothesis H1 with a risk error not greater than a. The fulfillment of the second 
condition 2B (39) means the immediate need to stop the accumulation and return 
to the tracking of the subtraction sign xt – c. Just like in the previous case, the 
fulfillment of condition 1B

 or 2B results in the bringing of index i (i = 0) to zero.

7. Examples of Control Chart Use
Example 1

Preservative is automatically added to fruit juice during the bottling process. 
This preservative is not altogether healthy for consumers. An optimum quantity 
of the preservative which does not pose a threat to the health of the consumer 
and guarantees the freshness of the product is x0 = 140 mg/l plus minus 20 mg/l. 
The precision of the dispenser is constant at s = 10 mg. If it is assumed that 
the content of the substance in 1 litre of the beverage is a random variable with 
normal probability distribution, a Shewhart control chart that will allow for the 
acceptance or disqualification of the process of dispensing the preservative should 
be constructed. When constructing the chart, it should be assumed that a = b = 0.1.
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As the analysed diagnostic variable is the nominal best of the examined 
process, the following hypotheses are subject to verification:

H0: mt = x0 = 140 mg/l,    
H–1: mt = x0 – Dm = m–1 = 120 mg/l,   
H1: mt = x0 + Dm = m1 = 160 mg/l.
The value of difference Dm = 20 was adopted arbitrarily in this case and was 

linked to the length of the tolerance interval. In some cases, the difference Dm may 
be reduced to the level of, e.g., 10 or 5 mg/l in order to improve the selectiveness 
of the designed procedure.

With the use of statistical charts of standard normal distribution, quantiles: 
ua = ub = 1.645 can be read. The minimum size of the sample n* = 2.7 ≈ 3 is 
calculated based on formula (13). The location of adjustment limits will be, 
respectively, formulas (4) and (5):

 . . ,x 140 1 645
3
10 149 5u .= +r  

 . . .x 140 1 645
3
10 130 5–l .=r  

Thus, if the average quantity of the substance calculated based on the 
randomly chosen sample of at least 3 juices fulfills inequality (16) – that is,  
130.5 ≤ xtr  ≤ 149.5 – then hypothesis H0 should be assumed and the probability 
that in fact hypothesis H–1 is true or hypothesis H1 does not exceed b = 0.1. 
If the computed mean of the sample lies beyond the area limited by control lines 

.x 130 5l .r  and . ,x 149 5u .r  then it should be stated that the examined process 
needs adjustment and the likelihood of it being redundant does not exceed  
a = 0.1.

Example 2

The settlement period for issued invoices was monitored. For this purpose, 
invoices were chosen randomly at the end of each month and the period that lapsed 
between the issuance of the invoice and the receipt of payment was observed. 
The necessary condition for financial liquidity is the average time of 7 days for 
the invoice to be paid. What can be said about the payment process if the values 
shown below were noted for 10 randomly chosen invoices? 

Table 1. Period of Invoice Settlement

i 1 2 3 4 5 6 7 8 9 10
n 1 2 3 4 5 6 7 8 9 10
xi 6 7 5 4 9 7 8 6 5 6

Source: conventional data.
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During the analysis of the above process, it can be assumed that: a = b = 0.05  
and the period of invoice settlement has a normal distribution with constant 
variance of 4.

Because the diagnostic variable of the period of invoice settlement is the 
smaller-the-better, the null hypothesis and the alternative hypothesis will take the 
following form:

H0: m = m0 = 7,
H1: m = m1 = 8.
With the use of formulas (23), (24) and (25), the values of parameters a, b and c 

necessary for applying the classical sequential procedure can be set.

 .
. . , .

. . , . .ln lna b c8 7
2

0 95
0 05 11 78 8 7

2
0 05
0 95 11 78 2

8 7 7 5– ––
2 2

= = = = = + =  

Thus, one obtains:
zl,n = –11.78 + 7.5n,
zu,n = 11.78 + 7.5n.
The results of the analysis of empirical data are shown in Table 2.

Table 2. Analysis of the Invoice Settlement Process with the Use of the Classical  
Sequential Procedure 

i n xi
zn zl, n zu, n Decision

1 1 6 6 –4.28 19.28 Continue testing
2 2 7 13 3.22 26.78 Continue testing
3 3 5 18 10.72 34.28 Continue testing
4 4 4 22 18.22 41.78 Continue testing
5 5 9 31 25.72 49.28 Continue testing
6 6 7 38 33.22 56.78 Continue testing
7 7 8 46 40.72 64.28 Continue testing
8 8 6 52 48.22 71.78 Continue testing
9 9 5 57 55.72 79.28 Continue testing
10 10 6 63 63.22 86.78 Assume H0

Source: the author’s study.

The above analysis shows that in the tenth step of the sequential process, with 
the size of the cumulative sample n = 10, the null hypothesis H0 should be assumed 
and the payment process should be considered adjusted. The probability of this 
evaluation being false does not exceed b = 0.05.
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A similar analysis can be conducted based on the modified procedure of 
cumulative sums. Then the values of parameters: d0, d1 and h0, h1 must be 
additionally computed (see formulas (32) to (35)).

The parameters are:

.

.
. , .

.
. ,

ln ln
d d8 7

2 2 0 95
0 05

1 57 8 7
2 2 0 05

0 95
1 57– – –0 2 2

2

1 2 2

2$ $
= = = =

 . , . .h d c z h d c z11 78 11 78–* *
d g0 0 1 1= = = = = =  

Having these parameters, re-analysis of the data can be started as shown in 
Table 3.

Table 3. Analysis of the Process of Invoice Settlement Using the Modified Procedure  
of Cumulative Sums

T i xti n z x c–*
i ti= z*

n Comments
1 1 6 1 –1.5 –1.5 xt < c (start accumulation, i = 1)
2 2 7 2 –0.5 –2 accumulate (i = i + 1)
3 3 5 3 –2.5 –4.5 accumulate (i = i + 1)
4 4 4 4 –3.5 –8 accumulate (i = i + 1)
5 5 9 5 1.5 –6.5 accumulate (i = i + 1)
6 6 7 6 –0.5 –7 accumulate (i = i + 1)
7 7 8 7 0.5 –6.5 accumulate (i = i + 1)
8 8 6 8 –1.5 –8 accumulate (i = i + 1)
9 9 5 9 –2.5 –10.5 accumulate (i = i + 1)
10 10 6 10 –1.5 –12 z z<* *

ln  (assume H0)
Source: the author’s calculations.

It is clear that the modified procedure of cumulative sums also needed ten 
steps to make a decision on the adoption of the null hypothesis. The accumulation 
process began in period t = 1 and lasted uninterrupted until period t = 10.

8. Conclusion

The behaviour algorithms presented in points 4 through 6 have been 
deliberately narrowed down to the case in which a diagnostic variable has normal 
distribution, with known standard deviation and the tolerance interval limited 
on the right-hand side. Similarly, one can also build behaviour schemes for cases 
when the tolerance interval is limited on the left-hand side and on both sides. 
The modification of cumulative sum control charts can also be performed for 
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cumulative sum control charts used to assess the quality due to discrete diagnostic 
variables. Examples of such solutions can be found in (Iwasiewicz 2008–2009; 
2011, and Major 2015).

An elementary advantage of the use of modified cumulative sum control 
charts is that, just like Shewhart control charts, they do not require preliminary 
determination of the size of the sample necessary for assuming one of the verified 
hypotheses. In sequential procedures and cumulative sum procedures based 
on them, the size of the sample is a parameter determined only at the time of 
accepting or disqualifying the process. Thanks to that parameter, there is no 
option to overestimate the sample size and generate excessive control costs. For 
this reason, sequential methods seem most efficient and cost effective when 
compared to the other process evaluation methods presented in this article.
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Karty kontrolne z możliwością akceptacji procesu 
(Streszczenie)

Celem artykułu jest przegląd oraz analiza podstawowych kart kontrolnych umożli-
wiających zarówno akceptację, jak i dyskwalifikację badanego procesu produkcyjnego. 
Istnieją dwa rodzaje kart kontrolnych umożliwiających akceptację procesu: karty kon- 
trolne Shewharta oraz karty kontrolne sum skumulowanych. Obie mogą być wykorzysty-
wane przez menedżerów jakości lub menedżerów finansowych w trakcie monitorowania 
lub audytu procesu.

W artykule zostały zilustrowane tylko wybrane przykładowe procedury kon- 
trolne. Pozostałe algorytmy można znaleźć w cytowanej literaturze lub opracować według 
zamieszczonych schematów. W artykule zwrócono również uwagę na mocne i słabe strony 
proponowanych rozwiązań oraz podano przykłady ich zastosowania.

Słowa kluczowe: kontrola jakości, karty akceptacji procesu, karty kontrolne sum skumu-
lowanych, statystyczne sterowanie procesem. 


