
KREM, 2025, 4(1010): 181–198
ISSN 1898-6447
e-ISSN 2545-3238
<https://doi.org/10.15678/krem.18700>

Motives Stimulating the Implementation of Business Solutions Based on Technological and Environmental Trends: Evidence of Polish SMEs

Michał Nowicki

Lodz University of Technology, Faculty of Organization and Management, Institute of Management, Żeromskiego 116, 90-924 Łódź, Poland, e-mail: michał.nowicki@p.lodz.pl,
ORCID: <https://orcid.org/0000-0003-3307-5626>

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY 4.0); <https://creativecommons.org/licenses/by/4.0/>

Suggested citation: Nowicki, M. (2025). Motives Stimulating the Implementation of Business Solutions Based on Technological and Environmental Trends: Evidence of Polish SMEs. *Krakow Review of Economics and Management / Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie*, 4(1010), 181–198. <https://doi.org/10.15678/krem.18700>

ABSTRACT

Objective: To contribute to a better understanding of the dynamics of change in the small and medium-sized enterprises (SMEs) sector and to the preliminary identification of key motivational factors and their impact on the decision-making processes of Polish SMEs in implementing innovative business solutions based on selected contemporary leading technological and environmental trends, as a response to the changing landscape of sustainable competitiveness, from both an economic and a social perspective.

Research Design & Methods: CATI pilot research conducted in December 2023 on a population of $n = 126$ respondents, research data obtained by a specialised external entity DSC Research Group Ltd.

Findings: When asked about the motives that encourage taking actions related to the development of 1) Sustainable Technology Management and 2) Sustainable Environmental Management systems through the implementation of innovative solutions based on selected, currently leading technological and environmental trends, the respondents indicated that these are: 1) internal

motivation/belief that this is the right direction to support the development of the company, 2) customer expectations, and 3) requirements arising from standards and policies at international level, e.g., European Union regulations. The analysis of the structure of the replies made it possible to observe differences in the distribution of the various indications and to identify a certain tendency, which indicates that the more often a given factor was mentioned in the population as a motive/motivator for action, the higher the percentage of indications that it was the “range I” (main primary) motivator and, conversely, the less often a given factor was mentioned, the higher the share in the distribution of the replies of the indication that it was a tertiary (range III) motivator.

Implications/Recommendations: Relatively low scores for conditions such as: 1) “required by institutions that support and finance the development of enterprises (e.g., banks, venture capital),” 2) “required by our business partners” and 3) “required by standards and policies at local level (local authority policies)” may indicate that the so-called business environment institutions are either not ready, not aware of, or do not see the need to reward enterprises that want to develop in a sustainable way, based on innovative technological and environmental trends. This fact can be interpreted as evidence of the need to take measures to support the creation and development of sustainable business cooperation ecosystems.

Contribution: The conducted research contributes to the development of knowledge about motives that can encourage entrepreneurs to implement innovative business solutions based on today’s leading technological and ecological trends in order to increase competitiveness while meeting the requirements and assumptions of sustainable development policies.

Article type: original article.

Keywords: technological trends, environmental trends, SME, business solution, competitiveness.

JEL Classification: M00, M20, M29, O39.

1. Introduction

A literature review indicates that contemporary enterprises are increasingly inclined towards implementing innovative business solutions that leverage modern technologies and consider changing environmental trends. With technological advancement and growing interest in sustainable development issues, businesses are seeking ways to adapt to the dynamically changing market environment and to utilise these changes as a source of competitiveness. In order to be effective in implementing change and to make effective use of the opportunities created by change, companies must focus on developing and implementing systemic solutions. In the context of the issues addressed in this article, the systems in question are specifically 1) Sustainable Technology Management (STM) that involves integrating principles of sustainable development with technological management processes within an organisation and 2) Sustainable Environmental Management (SEM)

that involves integrating principles of sustainable development with environmental (“green”) management processes within an organisation. STM, considering social, environmental, and economic aspects in technology-related decision-making, is a system aiming to achieve sustainable and balanced development. Key elements of STM include (Kamble, Gunasekaran & Gawankar, 2018; Cochran & Rauch, 2020; Furstenau *et al.*, 2020; Yadav *et al.*, 2020; El Baz *et al.*, 2022; Satyro *et al.*, 2022; Pereira & dos Santos, 2023):

- conducting assessments of the impact of technology on the natural environment, local community, and economic aspects,
- striving to minimise the negative impact of technology on the natural environment by reducing emissions, resource consumption, and waste generation,
- managing the life cycle of technology, from design to production, through use, to disposal and recycling,
- supporting sustainable social development by ensuring that technologies are used in a way that benefits the local community, improving quality of life, creating jobs, and supporting social equality,
- identifying and managing risks associated with the introduction of new technologies, including risks to the health and safety of workers, financial risks, and reputational risks,
- promoting innovative technological solutions that are in line with the principles of sustainable development and can contribute to solving global environmental and social issues,
- involving external stakeholders, such as the local community, non-governmental organisations, and governments, in the technology decision-making process to ensure social acceptance and increase benefits for all stakeholders.

The Sustainable Environmental Management system is also important. The nature and role of an organisation’s environmental management system is critical to ensuring harmony between business activities and environmental protection. The SEM is a strategic approach that integrates economic, social and environmental objectives to achieve long-term sustainable operations. The main elements of the system, which together provide the structure and framework for the organisation’s environmental activities, are typically as follows (Bond & Morrison-Saunders, 2011; Schoenherr, 2012; Kamble, Gunasekaran & Gawankar, 2018; Peters & Simaens, 2020; Różańska-Bińczyk, Matejun & Matusiak, 2020; Beltrami *et al.*, 2021; Kristensen, Mosgaard & Remmen, 2021; Malik *et al.*, 2024):

1. Environmental policy, which is the organisation’s commitment to environmental protection and the pursuit of sustainable development objectives, outlining the objectives and principles of environmental protection, and how the organisation will seek to achieve them.

2. Environmental planning, which includes the identification of environmental aspects and impacts associated with the organisation's activities, risk analysis, and the setting of environmental objectives and strategies.

3. Implementation and operating procedures, which describe how environmental policies and plans are put into practice by assigning responsibilities for implementing measures, providing training for employees, and monitoring progress towards environmental objectives.

4. Monitoring and control procedures, which enable organisations to monitor their environmental activities and results on a regular basis in order to evaluate the effectiveness of the measures taken and to identify areas for improvement. Control also includes the application of procedures for dealing with environmental emergencies and incidents.

5. Evaluation and audit procedures, related to the need for periodic evaluation and audit of the environmental management system to verify compliance with legal and environmental requirements, international standards and the effectiveness of the measures taken by the organisation.

6. Continuous improvement procedures, which characterise the process of analysing environmental monitoring results and evaluating environmental activities, and implementing new solutions and innovations to improve the effectiveness of the environmental management system.

7. Stakeholder engagement scenarios, which require organisations to involve their stakeholders, such as employees, suppliers, customers, and the local community, in the environmental decision-making process and to promote openness, dialogue and cooperation in environmental activities.

The combination of the above-mentioned elements creates a comprehensive SEM system that enables organisations to manage the environment effectively and minimise the negative impact of their activities on the natural environment. On the basis of the above observations, it is fair to say that the development and improvement of STM and SEM systems is now a developmental challenge for companies seeking to build a strong and sustainable competitive position. Given the rapid and accelerating pace of technological change and the growing emphasis on social responsibility and environmental protection, it is essential to understand the motivations that drive companies to adapt these new business solutions.

2. Methodology of Pilot Studies

The pilot studies were conducted using the CATI technique and an original survey questionnaire comprising 12 statement/opinion questions, 5 assessment questions, 1 ranking question, and metric questions. The task of data collection and the creation of an anonymised, encoded database was entrusted in December 2023 to a specialised external entity – DSC Research Group Ltd.

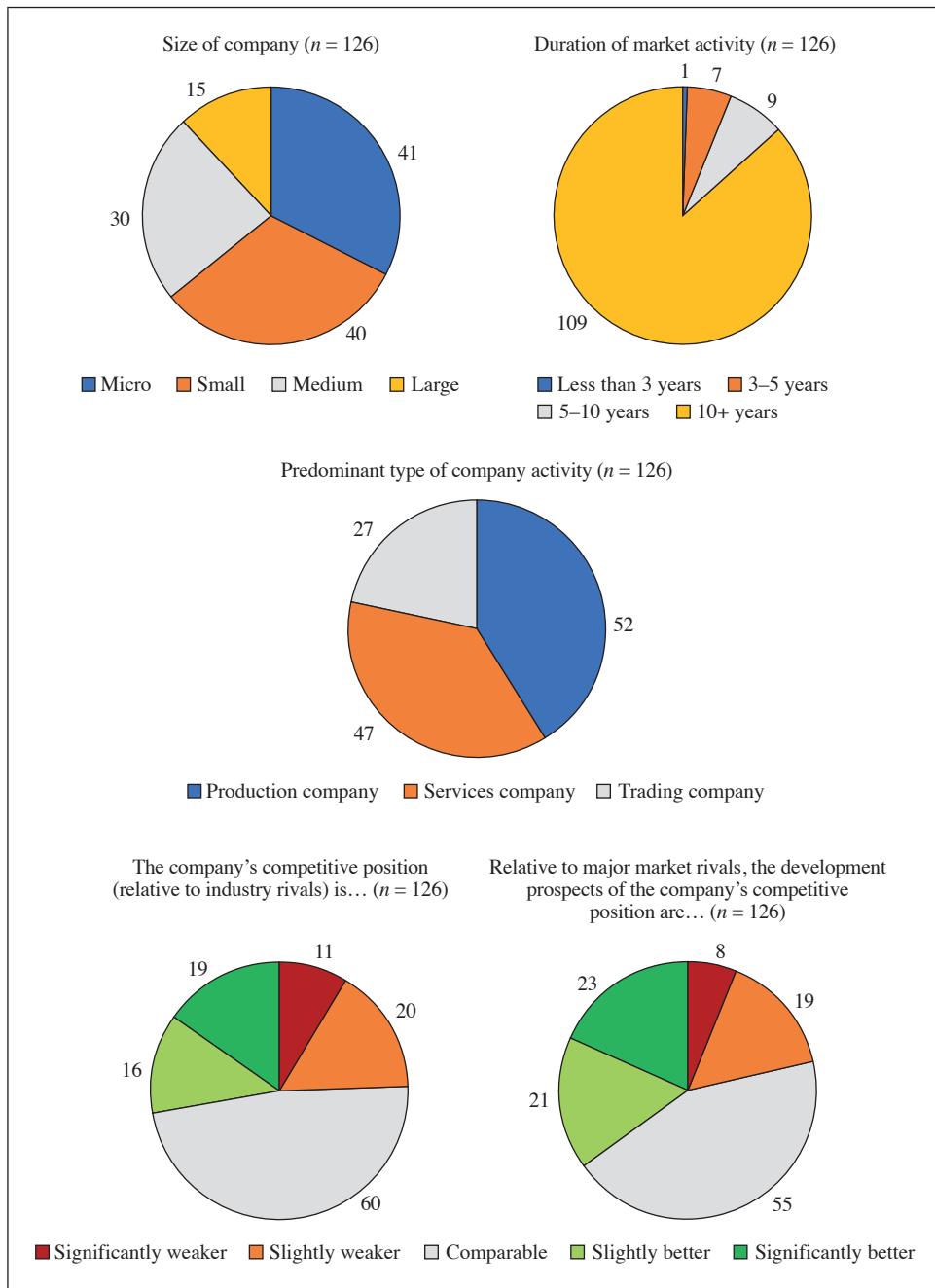


Fig. 1. Basic Metric Data

Source: the author.

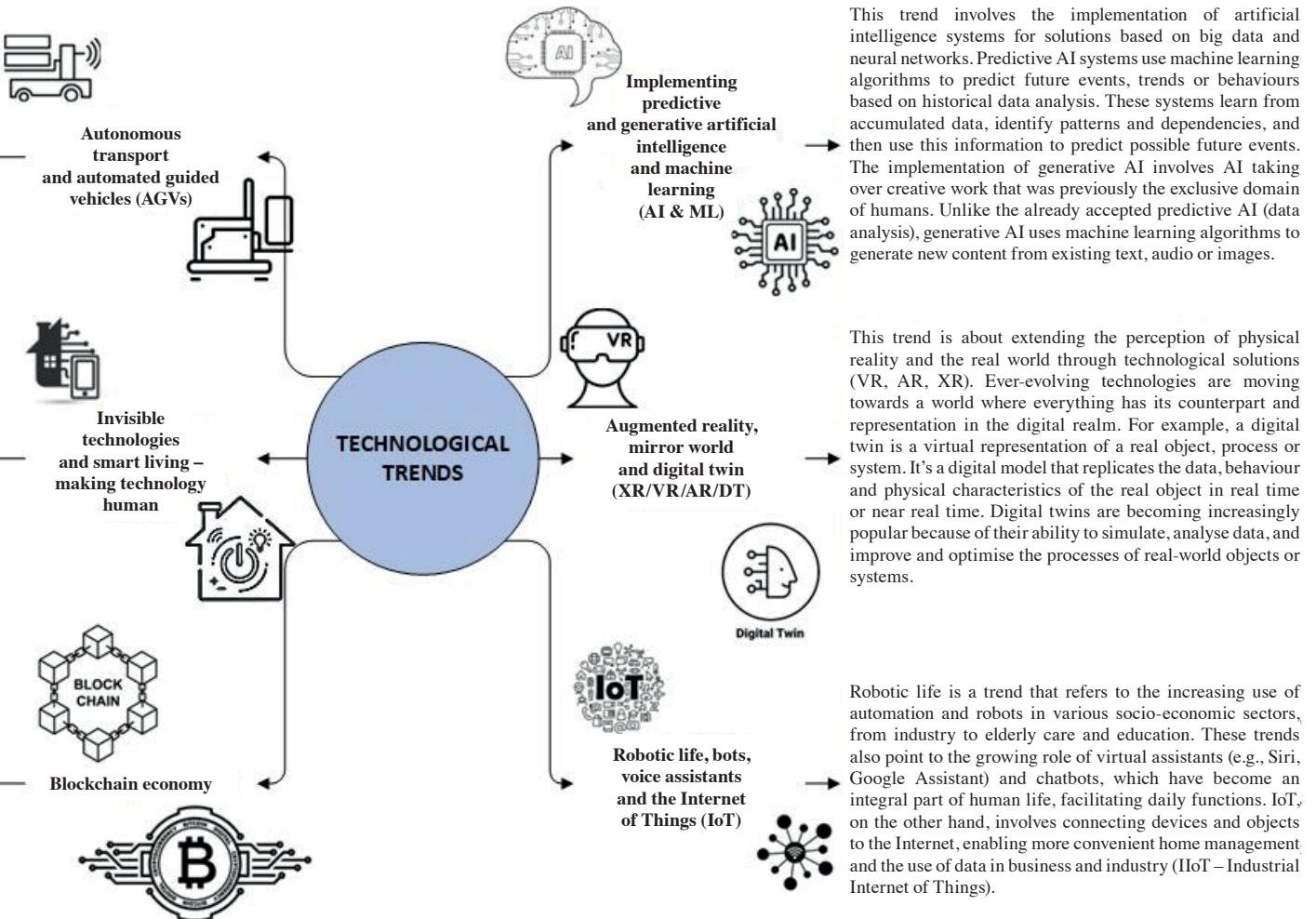
Research data were collected from a total of $n = 126$ entities. In order to guarantee representativeness and minimise bias, the research sample was selected at random from a nationwide database of Polish companies. The selection process was based on the principle of equal opportunity, whereby each element of the population was afforded an equal chance of being selected for the sample. The process was based on randomisation techniques, which excluded the influence of subjective decisions and reduced the possibility of errors resulting from the inappropriate selection of participants. In order to be selected for the research sample, companies had to meet a number of criteria, which were established at the preselection stage:

- the size of the entity under study was classified as micro, small, medium, or large,
- the type of activity of the surveyed entity was classified as trade, manufacturing, or services,
- the length of time that the surveyed entity has been active in the market.

Given the structure of the research sample and its limited size ($n = 126$), it can be assumed that the sample is not representative of the entire population. Consequently, the results obtained (see Fig. 1) reflect only the situation of the surveyed entities, as noted in section 5.

At the beginning of the telephone interview, respondents were introduced to the topics and issues of the research. At this stage, it was indicated that based on a literature review, the dynamic and inevitable transformations accompanying the development of Industry 4.0 on one hand force, but on the other hand stimulate and support, the processes of reorganising business activities. Particularly in this context, technological trends and those related to environmental protection are increasingly assigned a significant role. Respondents were asked to provide answers that would help better define and understand the motives and reasons that could stimulate the willingness to invest in innovative solutions based on the examined trends presented in Figure 2.

The figure presents and provides a brief characterisation of the selected technological and environmental trends subject to the study. Among both groups, six specific trends were identified, each currently enjoying great interest from researchers and a rapidly growing stock of scientific studies on their role and significance, as well as their impact on the implementation of investment and business processes and projects among Polish SMEs.


3. Motives Stimulating the Implementation of Business Solutions Based on Selected Technological and Environmental Trends – Pilot Study Results

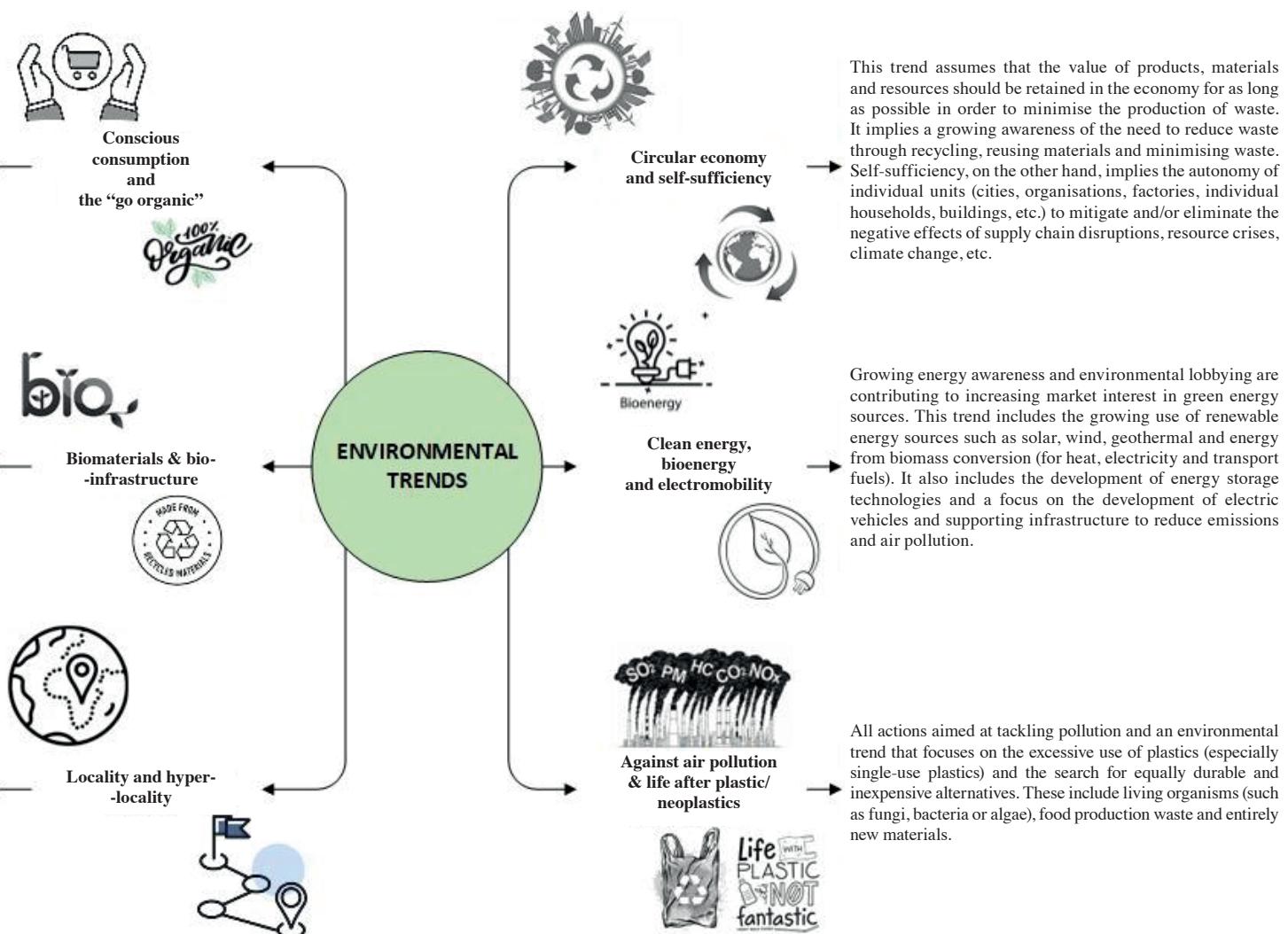
One of the questions asked respondents for their views on the motivations for implementing business solutions based on technology trends. Respondents indicated

There is increasing discussion about the impact of autonomous transport (individual, passenger, freight) on various aspects of our lives, including the functioning of cities and the maintenance of safety. On the other hand, AGVs (automated guided vehicles) involve the use of automated mobile robots that are used in various industries to automatically move and transport goods or materials within manufacturing plants, warehouses or other industrial facilities. They can also be used for assembly tasks or warehouse handling, where their precise control and ability to work in a variety of conditions ensure the efficiency and optimisation of production processes.

Trends that point to the increasing role of technology as a tool at the service of humanity. Invisible technologies refer to the trend of technology becoming almost imperceptible as it is integrated into people's daily lives. Within these trends, solutions based primarily on new technologies support people's daily lives in cities, at work, at home, etc., making them easier, more energy-efficient and cheaper.

Solutions, products and services based on blockchain (a decentralised and distributed database) are currently part of a new trend towards an economy based on transparency. Blockchain is a technology that enables the creation of digital transaction or data records that are stored in a distributed and immutable manner. It's a type of digital ledger made up of blocks of information linked together using cryptography. This tool changes the way data is stored, shared and protected, ensuring greater transparency and security in various sectors. Initially associated mainly with cryptocurrencies, where it serves as the technological basis for recording transactions, this technology has found wide applications beyond the financial sector, including supply chain management, electronic voting, securing medical data or authenticating documents.

This trend involves the implementation of artificial intelligence systems for solutions based on big data and neural networks. Predictive AI systems use machine learning algorithms to predict future events, trends or behaviours based on historical data analysis. These systems learn from accumulated data, identify patterns and dependencies, and then use this information to predict possible future events. The implementation of generative AI involves AI taking over creative work that was previously the exclusive domain of humans. Unlike the already accepted predictive AI (data analysis), generative AI uses machine learning algorithms to generate new content from existing text, audio or images.


This trend is about extending the perception of physical reality and the real world through technological solutions (VR, AR, XR). Ever-evolving technologies are moving towards a world where everything has its counterpart and representation in the digital realm. For example, a digital twin is a virtual representation of a real object, process or system. It's a digital model that replicates the data, behaviour and physical characteristics of the real object in real time or near real time. Digital twins are becoming increasingly popular because of their ability to simulate, analyse data, and improve and optimise the processes of real-world objects or systems.

Robotic life is a trend that refers to the increasing use of automation and robots in various socio-economic sectors, from industry to elderly care and education. These trends also point to the growing role of virtual assistants (e.g., Siri, Google Assistant) and chatbots, which have become an integral part of human life, facilitating daily functions. IoT, on the other hand, involves connecting devices and objects to the Internet, enabling more convenient home management and the use of data in business and industry (IIoT – Industrial Internet of Things).

This trend refers to growing consumer awareness and responsible product development by brands. It encompasses activities aimed at countering increasing consumerism. Consumers are increasingly aware and selective about the food they buy. They want to know not only how they are produced, but also what substances they contain and whether they are truly healthy.

A trend that encompasses a group of natural or synthetic materials that interact with biological systems (and are therefore primarily used in medicine), are derived from living organisms (plants, fungi, animals), and are used in a wide range of manufacturing and construction applications. Bio-infrastructure is a trend that combines biological elements (green infrastructure) with those created by humans (grey infrastructure). In urban systems, it also involves treating nature as an essential part of the city, responsible for ecosystem services (such as stormwater management, flood prevention, wastewater treatment, air quality improvement, etc.) or integrating natural systems with technological systems. These trends also include the principles of ecological and sustainable design.

This trend resists globalisation. It emphasises that what is local is better, more authentic and more valuable. Locality is synonymous with what is important, valuable and authentic. Supporting local businesses is becoming more common. On the other hand, companies are increasingly relying on local supply chains to mitigate risk.

This trend assumes that the value of products, materials and resources should be retained in the economy for as long as possible in order to minimise the production of waste. It implies a growing awareness of the need to reduce waste through recycling, reusing materials and minimising waste. Self-sufficiency, on the other hand, implies the autonomy of individual units (cities, organisations, factories, individual households, buildings, etc.) to mitigate and/or eliminate the negative effects of supply chain disruptions, resource crises, climate change, etc.

Growing energy awareness and environmental lobbying are contributing to increasing market interest in green energy sources. This trend includes the growing use of renewable energy sources such as solar, wind, geothermal and energy from biomass conversion (for heat, electricity and transport fuels). It also includes the development of energy storage technologies and a focus on the development of electric vehicles and supporting infrastructure to reduce emissions and air pollution.

All actions aimed at tackling pollution and an environmental trend that focuses on the excessive use of plastics (especially single-use plastics) and the search for equally durable and inexpensive alternatives. These include living organisms (such as fungi, bacteria or algae), food production waste and entirely new materials.

Fig. 2. Examined Sets of Technological and Environmental Trends – Brief Specification

Source: the author.

that they were most often internally motivated and convinced that this is the right direction to support the development of the company (75 indications = 59.52% of all votes), encouraged by customer expectations (68) and obliged to due to requirements deriving from standards and policies at international level, e.g., European Union regulations (57). Decisions to invest in business solutions based on technology trends were, on average, often influenced by requirements deriving from standards and policies at central/national level government policy (42), requirements established by business partners (37) and expectations of institutions supporting and financing business development (24). Finally, the least frequently mentioned motives were: requirements of investors and/or shareholders (21), requirements of local standards and policies/local government policies (21), and expectations of other company stakeholders (13). Figure 3 presents a graphical interpretation of the results.

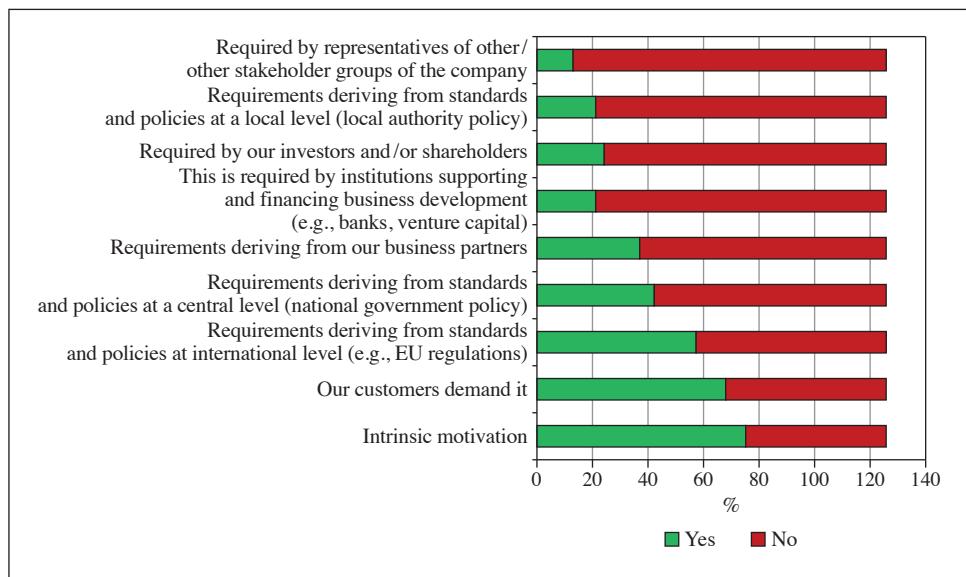


Fig. 3. Does a Given Premise Motivate the Implementation of Business Solutions Based on Technological Trends?

Source: the author.

Subsequently, respondents were asked to indicate the strength of a given motivator. If the respondent considered a given factor to be a motivator/motive for the use of business solutions based on technological trends (the respondent could indicate up to 3 out of 9), an attempt was made to examine the “importance rank” of this impact using a 3-point scale. The analysis of the structure of the responses allowed observation of differences in the distribution of the individual indications and identify a certain tendency, showing that the more often a given factor was mentioned in the

population as a motive/motivator of actions, the higher the percentage of indications that it was the “range I” (primary) motivator, and vice versa, the less often a given factor was mentioned, the higher its share in the distribution of the responses of the indication that it was a tertiary motivator.

For example, respondents who declared that internal motivation (the factor most frequently indicated) stimulates the implementation of business solutions based on technological trends, indicated it as “range I” motivator 43 times, as “range II” 13 times, and as “range III” 19 times, whereas in the case of the least frequently indicated motivator – “requirements set by representatives of other/remaining stakeholder groups” that was indicated 13 times in total distribution of the individual indications is 2/4/7 (see Fig. 4).

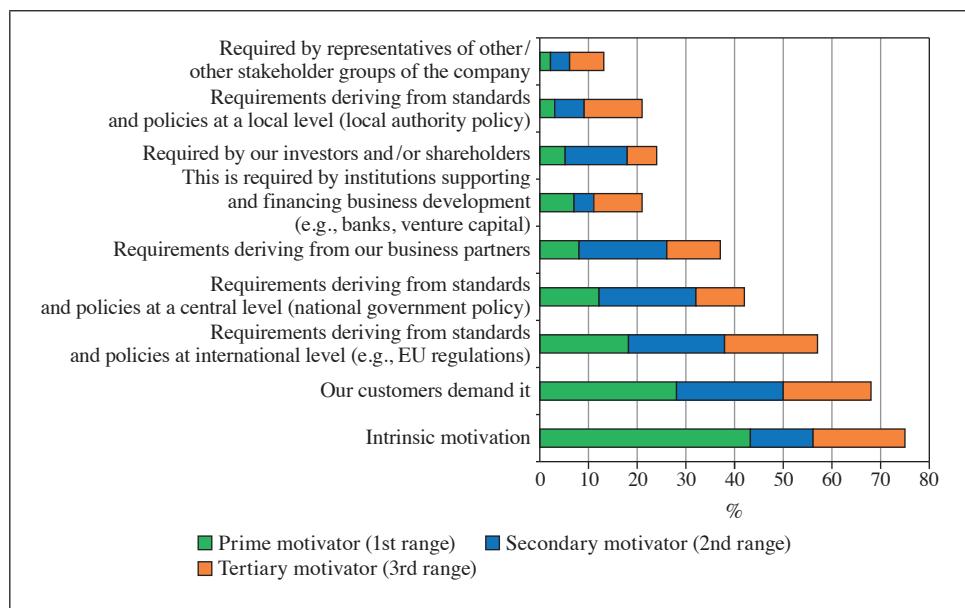


Fig. 4. Motives Driving the Implementation of Business Solutions Based on Selected Technological Trends – the Distribution of Responses in the Context of the Rank of the Motivator

Source: the author.

Using exactly the same principles, respondents were asked to indicate whether and to what extent the examined motives serve as incentives for implementing business solutions based on environmental trends. In comparison to technological trends, a shift occurred here – the most frequently indicated motives are requirements set by customers (68 mentions out of 126), internal convictions (60), and equally requirements stemming from international norms and policies (e.g., EU regulations) and

those arising from norms and policies at the central level (national government policies), each receiving 54 mentions (see Fig. 5). Among the least frequently indicated motives were once again requirements set by representatives of other/remaining stakeholder groups (11) and requirements arising from norms and policies at the local level – local government policies (25), while the category “requirements set by representatives of institutions supporting and financing business development” was replaced with “requirements deriving from our business partners” (19).

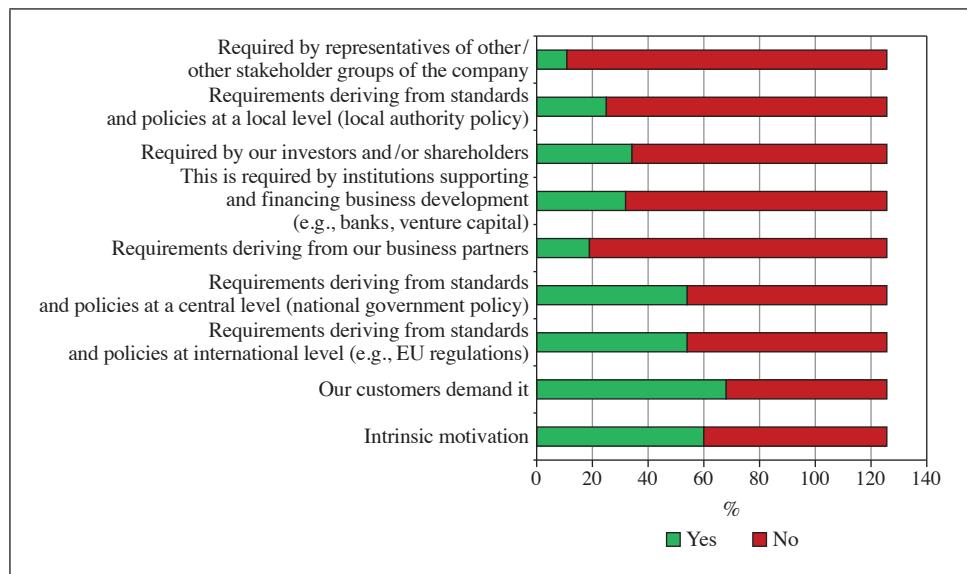


Fig. 5. Does a Given Premise Motivate the Implementation of Business Solutions Based on Environmental Trends?

Source: the author.

The observed dependency regarding the distribution of individual responses concerning the strength/character of impact depending on the number of indications of a given factor as a motivator is also evident for environmental trends (see Fig. 6). Once again, in the case of the most frequently indicated motivator, “it is demanded by our customers” (68 indications in total) the largest share of responses indicates it as “range I” (29), followed by “range II” (24), and finally, the smallest share indicates it as a “range III” motivator (15). Conversely, in the case of the least frequently indicated motivator, “requirements set by representatives of other/remaining stakeholder groups” – 11 indications in total, responses predominantly indicate it as a tertiary motivator (5/11), followed by secondary and primary motivators (3 mentions each).

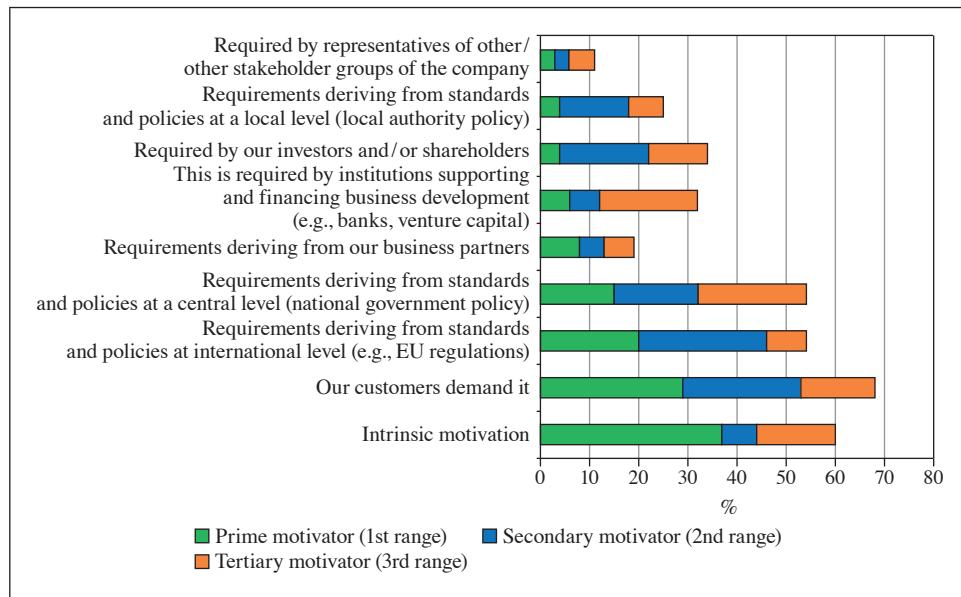


Fig. 6. Motives Driving the Implementation of Business Solutions Based on Selected Environmental Trends – the Distribution of Responses in the Context of the Rank of the Motivator

Source: the author.

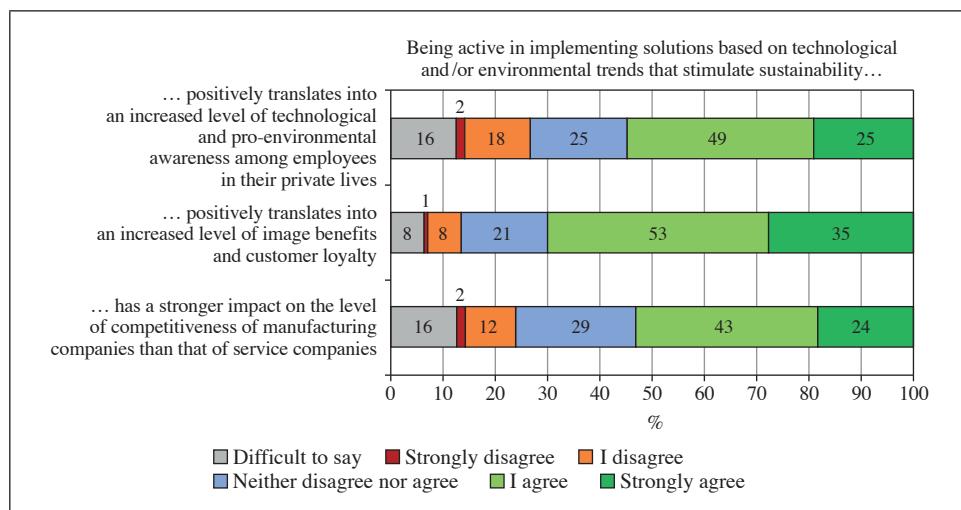


Fig. 7. Being Active in Implementing Solutions Based on Technological and/or Environmental Trends That Stimulate Sustainability

Source: the author.

As part of the conducted research, respondents were also asked to respond to the following statements:

1. The activity in implementing solutions based on technological and/or environmental trends stimulating sustainable development positively translates into an increase in the level of technological and pro-environmental awareness among employees in their private lives.
2. The activity in implementing solutions based on technological and/or environmental trends stimulating sustainable development positively translates into an increase in levels of brand reputation and customer loyalty.
3. Manufacturing enterprises are more engaged and effective than service enterprises in implementing solutions based on technological and/or environmental trends stimulating sustainable development.

The distribution of answers is presented graphically in Figure 7.

Analysing the obtained results, it can be indicated that respondents generally agreed more frequently with the presented statements than disagreed with them (statement I – 74 vs. 20, II – 88 vs. 9, III – 67 vs. 14). However, it is worth noting a considerable proportion of responses such as “difficult to say” and “neither agree nor disagree” (statement I – 41, II – 29, III – 45). Therefore, caution is advised when drawing final conclusions regarding the phenomena studied.

4. Research Implications and Discussion

The presented research results indicate that companies – respondents of the conducted research process – perceive the growing importance and impact of business solutions based on selected technological and environmental trends. In order to intensify their development, strengthen their competitive position, and gain recognition and reputation, they need to seek out and use all opportunities to build effective and efficient STM and SEM systems. The results of the pilot research indicate that the dominant premises are “internal conviction” that these actions are right, necessary and can bring benefits in the future, and that they are strongly inspired by customer influence. This result can be interpreted in a very positive way, firstly because it means that companies are aware of the role, importance and significance of conducting their business activities in a responsible and sustainable way, secondly because they also perceive the important role of adapting to the needs and specifics of the present time, characterised by the emphasis on intensifying initiatives related to rapid technological development and the increasing emphasis on environmental/ecological awareness, and thirdly because they accept the need to conduct activities in a business model that takes into account the expectations of customers who are increasingly sensitive to environmental issues, environmental protection, and conscious and sustainable consumption.

These results may suggest that respondents were aware of the significance, role, and importance of implementing business solutions based on technological and ecological trends as part of the development of 1) STM and 2) SEM systems. This orientation should be considered important and positive, because, as research results indicate, there are numerous advantages and benefits associated with initiatives developing the above-mentioned systems. The literature most often indicates that the implementation of STM activities is important for the creation of competitive advantage of contemporary companies, as it allows, among other things (Kagermann, Wahlster & Helbig, 2013; Martin, 2017; Lopes de Sousa Jabbour *et al.*, 2018a, 2018b; Ghobakhloo, 2020; Guterman, 2020; Novitasari & Agustia, 2023):

1. Strengthening social and environmental responsibility, as STM aims to minimise the negative impact of technology on society and the environment. Improving the quality of life of communities and protecting the natural environment are crucial for maintaining harmony between technological progress and social welfare.
2. Generating long-term benefits (e.g., reducing operational costs, improving company image, increasing innovation and market competitiveness), and contributing to saving natural resources, reducing greenhouse gas emissions, and reducing the amount of waste generated by technological processes.
3. Promoting socially and ethically responsible attitudes – STM takes into account social and ethical aspects, such as worker safety, human rights, social justice, and gender equality.

As a result, STM is important not only from an economic perspective but also from social, environmental, and ethical perspectives, contributing to the sustainable development of society and the planet. Complementary to it is the SEM system, whose importance is linked to the benefits that can be achieved by companies that implement environmental solutions. Some of the most commonly cited benefits in the literature include (Ambec & Lanoie, 2008; Ferenhof *et al.*, 2014; Bugdol, Puciato & Borys, 2020; Bintara *et al.*, 2023):

1. Preservation of reputation and trust: Companies that are committed to environmental protection are perceived as more responsible and trustworthy by customers, employees, investors, and the community. Implementing green solutions can therefore help to maintain a positive reputation and trust in the brand, in addition to the fact that, according to the principles of CSR, companies have a moral obligation to protect the environment and contribute to its preservation, and that implementing green solutions is an expression of commitment to sustainable development goals and social responsibility.

2. Conservation of resources: Implementing effective environmental solutions can help conserve resources such as energy, water and natural resources. This allows companies to reduce operating costs and increase competitiveness in the market. This type of benefit has been particularly noticeable in recent years – the rapid rise

in energy prices and the cost of CO₂ emissions for many companies that had not previously invested in infrastructure related to the “it’s good to be green” concept proved to be a factor that slowed down their development opportunities and often threatened their survival.

3. Stimulating pro-innovation attitudes and accelerating technological development, as the implementation of environmentally friendly solutions often requires an innovative approach and the use of new technologies. This allows businesses to develop their technical skills and gain a competitive edge in the market.

4. Compliance with regulations and standards, i.e., the ability to comply with increasingly stringent environmental legislation that imposes obligations on companies in terms of emissions reduction, waste management or energy efficiency. By implementing green solutions, companies can comply with applicable regulations and standards, avoid fines and bans, and increasingly obtain additional financial resources to implement green solutions.

5. Increased competitiveness: Organisations that adopt sustainable environmental management practices are often seen as more attractive to customers, investors and employees, which can translate into increased competitiveness in the market.

In summary, the implementation of environmentally sound solutions is a key element of a sustainable development strategy for companies (Geissdoerfer *et al.*, 2020; Adamik & Sikora-Fernandez, 2021; van Zanten & van Tulder, 2021; Martins *et al.*, 2022; Saura, Skare & Riberio-Navarrete, 2022), contributing to sustainable economic growth (Schaltegger, Lüdeke-Freund & Hansen, 2012; Bansal & Song, 2017; Waddock, 2020), environmental protection and the improvement of the quality of life of local communities, as well as increasing added value for society and the natural environment.

5. Research Limitations and Further Action Plan

Due to time and financial constraints, as well as the fact that the conducted research was of a pilot nature, a forced simplification was applied in the research process, consisting of grouping the indicated technological and environmental trends into two broad groups. Consequently, the obtained results represent an “averaged” and “simplified” picture of the studied issues. Additionally, given the structure of the research sample and its limited size ($n = 126$), it can be assumed that the sample is not representative of the entire population. The results of the research process, although possessing some scientific and cognitive value, require further elaboration. Therefore, a research project is being prepared in which there is no intention to group trends into two large groups as was the case in the pilot studies. Another planned qualitative change will be to increase the research sample size (a minimum of 300 entities), increase emphasis on ensuring a higher representativeness of the sample considering the specificity of the Polish economy (dominance of micro-

-enterprises), as well as regionalisation of the research (probably based on the criterion of voivodeship) or focusing on pre-defined, selected industries. There is also consideration of increasing the number of specific trends studied to 10 and adding a category of economic trends. The planned changes should allow for obtaining more precise, accurate research material, the analysis of which would enable the provision of more precise answers to questions related to which trends, how, and to what extent they influence the readiness and willingness of enterprises to implement innovative business solutions, as well as what their main motivational factors are.

6. Conclusions

On the basis of the provided data and observations, it is fair to say that the development and improvement of STM and SEM systems is now a developmental challenge for companies seeking to build a strong and sustainable competitive position (Furstenau *et al.*, 2020; Adamik, 2021; Ribeiro & Steiner Neto, 2021; Tarnovskaya, 2023; Sun, 2024). At the same time, it is becoming increasingly clear that in order to develop these systems effectively, along with the emphasis on intensifying technological development and the growing interest in sustainable development issues, organisations need to find adequate ways to adapt to the dynamically changing market environment and to use these changes as a source of competitiveness. In this context, the efficient implementation of business solutions based on technological and environmental trends is becoming increasingly important. Given the rapid and accelerating pace of technological change and the growing emphasis on social responsibility and environmental protection, it is essential to understand the motivations that drive companies to adapt these new business solutions. On the other hand, a slightly less optimistic observation can be made based on the perception that low results were recorded for premises such as “required by institutions that support and finance the development of enterprises” and “required by norms and policies at the local level,” which may indicate that the so-called institutions of the business environment are either not ready, do not have an idea, or do not see the need to reward enterprises that want to develop in a sustainable way, based on innovative technological-ecological trends. Relatively low indicators were also noted for the premise “required by our business partners” as a motivator for intensifying efforts to implement innovative business solutions. This fact can be interpreted as an indication of the need for measures to support the creation and development of sustainable business cooperation ecosystems.

Acknowledgement and Financial Disclosure

The research project was funded by the “FU2N – Young Scientists Skills Improvement Fund” programme, which supports scientific excellence at the Lodz University of Technology.

Conflict of Interest

The author declares no conflict of interest.

References

Adamik, A. (2021). Change and Relational Strategies: Through an Organizational Intelligence Lens. In: K. M. Klimczak, Y. Shachmurove (Eds), *Organizational Change and Relational Resources* (1st ed.). Routledge. <https://doi.org/10.4324/9781003172604>

Adamik, A., & Sikora-Fernandez, D. (2021). Smart Organizations as a Source of Competitiveness and Sustainable Development in the Age of Industry 4.0: Integration of Micro and Macro Perspective. *Energies*, 14(6), 1572. <https://doi.org/10.3390/en14061572>

Ambec, S., & Lanoie, P. (2008). Does It Pay to Be Green? A Systematic Overview. *The Academy of Management Perspectives*, 22(4), 45–62. <https://doi.org/10.5465/amp.2008.35590353>

Bansal, P., & Song, H.-C. (2017). Similar but Not the Same: Differentiating Corporate Sustainability from Corporate Responsibility. *Academy of Management Annals*, 11(1), 105–149. <https://doi.org/10.5465/annals.2015.0095>

Beltrami, M., Orzes, G., Sarkis, J., & Sartor, M. (2021). Industry 4.0 and Sustainability: Towards Conceptualization and Theory. *Journal of Cleaner Production*, 312, 127733. <https://doi.org/10.1016/j.jclepro.2021.127733>

Bintara, R., Yadiati, W., Zarkasyi, M. W., & Tanzil, N. D. (2023). Management of Green Competitive Advantage: A Systematic Literature Review and Research Agenda. *Economies*, 11(2), 66. <https://doi.org/10.3390/economies11020066>

Bond, A. J., & Morrison-Saunders, A. (2011). Re-evaluating Sustainability Assessment: Aligning the Vision and the Practice. *Environmental Impact Assessment Review*, 31(1), 1–7. <https://doi.org/10.1016/j.eiar.2010.01.007>

Bugdol, M., Puciato, D., & Borys, T. (2020). Environmental Management Systems in the Context of Sustainable Development – the Identification of Open Problems. *Problemy Ekonozwoju*, 15(2), 131–142. <https://doi.org/10.35784/pe.2020.2.14>

Cochran, D. S., & Rauch, E. (2020). Sustainable Enterprise Design 4.0: Addressing Industry 4.0 Technologies from the Perspective of Sustainability. *Procedia Manufacturing*, 51, 1237–1244. <https://doi.org/10.1016/j.promfg.2020.10.173>

El Baz, J., Tiwari, S., Akenroye, T., Cherrafi, A., & Derrouiche, R. (2022). A Framework of Sustainability Drivers and Externalities for Industry 4.0 Technologies Using the Best-worst Method. *Journal of Cleaner Production*, 344, 130909. <https://doi.org/10.1016/j.jclepro.2022.130909>

Ferenhof, H. A., Vignochi, L., Selig, P. M., Lezana, Á. G. R., & Campos, L. M. S. (2014). Environmental Management Systems in Small and Medium-sized Enterprises: An Analysis and Systematic Review. *Journal of Cleaner Production*, 74, 44–53. <https://doi.org/10.1016/j.jclepro.2014.03.027>

Furstenau, L. B., Sott, M. K., Kipper, L. M., Machado, É. L., López-Robles, J. R., Dohan, M. S., Cobo, M. S., Zahid, A., Abbasi, Q. H., & Imran, M. A. (2020). Link between Sustainability and Industry 4.0: Trends, Challenges and New Perspectives. *IEEE Access*, 8, 140079–140096. <https://doi.org/10.1109/ACCESS.2020.3012812>

Geissdoerfer, M., Pieroni, M. P. P., Pigozzo, D. C. A., & Soufani, K. (2020). Circular Business Models: A Review. *Journal of Cleaner Production*, 277, 123741. <https://doi.org/10.1016/j.jclepro.2020.123741>

Ghobakhloo, M. (2020). Industry 4.0, Digitization, and Opportunities for Sustainability. *Journal of Cleaner Production*, 252, 119869. <https://doi.org/10.1016/j.jclepro.2019.119869>

Guterman, A. S. (2020). *Sustainable Technology Management*. <https://doi.org/10.2139/ssrn.3833976>

Kagermann, H., Wahlster, W., & Helbig, J. (2013). *Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative Industrie 4.0. Final Report of the Industrie 4.0 Working Group*. Acatech – National Academy of Science and Engineering.

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 Framework: A Systematic Literature Review Identifying the Current Trends and Future Perspectives. *Process Safety and Environmental Protection*, 117, 408–425. <https://doi.org/10.1016/j.psep.2018.05.009>

Kristensen, H. S., Mosgaard, M. A., & Remmen, A. (2021). Integrating Circular Principles in Environmental Management Systems. *Journal of Cleaner Production*, 286, 125485. <https://doi.org/10.1016/j.jclepro.2020.125485>

Lopes de Sousa Jabbour, A. B., Jabbour, C. J. C., Godinho Filho, M., & Roubaud, D. (2018a). Industry 4.0 and the Circular Economy: A Proposed Research Agenda and Original Roadmap for Sustainable Operations. *Annals of Operations Research*, 270, 273–286. <https://doi.org/10.1007/s10479-018-2772-8>

Lopes de Sousa Jabbour, A. B., Jabbour, C. J. C., Foropon, C., & Godinho Filho, M. (2018b). When Titans Meet – Can Industry 4.0 Revolutionise the Environmentally Sustainable Manufacturing Wave? The Role of Critical Success Factors. *Technological Forecasting and Social Change*, 132, 18–25. <https://doi.org/10.1016/j.techfore.2018.01.017>

Malik, A., Sharma, S., Batra, I., Sharma, C., Kaswan, M. S., & Garza-Reyes, J. A. (2024). Industrial Revolution and Environmental Sustainability: An Analytical Interpretation of Research Constituents in Industry 4.0. *International Journal of Lean Six Sigma*, 15(1), 22–49. <https://doi.org/10.1108/IJLSS-02-2023-0030>

Martin, M. (2017). Management of Technology in the Process of Building Competitive Advantage of the Firm. In: Z. Leszczyński (Ed.), *Contemporary Issues of Accounting and Management in Poland and in Bulgaria* (pp. 117–125). Lodz University of Technology Press. <https://doi.org/10.34658/9788372838346>

Martins, A., Branco, M. C., Melo, P. N., & Machado, C. (2022). Sustainability in Small and Medium-sized Enterprises: A Systematic Literature Review and Future Research Agenda. *Sustainability*, 14(11), 6493. <https://doi.org/10.3390/su14116493>

Novitasari, M., & Agustia, D. (2023). Competitive Advantage as a Mediating Effect in the Impact of Green Innovation and Firm Performance. *Business: Theory and Practice*, 24(1), 216–226. <https://doi.org/10.3846/btp.2023.15865>

Pereira, R., & dos Santos, N. (2023). Neoindustrialization – Reflections on a New Paradigmatic Approach for the Industry: A Scoping Review on Industry 5.0. *Logistics*, 7(3), 43. <https://doi.org/10.3390/logistics7030043>

Peters, J., & Simaens, A. (2020). Integrating Sustainability into Corporate Strategy: A Case Study of the Textile and Clothing Industry. *Sustainability*, 12(15), 6125. <https://doi.org/10.3390/su12156125>

Ribeiro, O. C. R., & Steiner Neto, P. J. (2021). Sustainable Competitive Advantage and Green Innovation: A Review of Joint Scale Propositions. *Gestão & Produção*, 28(3), e5669. <https://doi.org/10.1590/1806-9649-2021v28e5669>

Różańska-Bińczyk, I., Matejuni, M., & Matusiak, B. (2020). Praktyki green HR we współpracyczesnych przedsiębiorstwach. In: J. Cewińska, A. Krejner-Nowecka, S. Winch (Eds), *Zarządzanie kapitałem ludzkim – wyzwania* (pp. 77–91). Oficyna Wydawnicza SGH.

Satyro, W. C., de Almeida, C. M. V. B., Pinto, M. J. A., Jr., Contador, J. C., Giannetti, B. F., de Lima, A. F., & Fragomeni, M. A. (2022). Industry 4.0 Implementation: The Relevance of Sustainability and the Potential Social Impact in a Developing Country. *Journal of Cleaner Production*, 337, 130456. <https://doi.org/10.1016/j.jclepro.2022.130456>

Saura, J. R., Skare, M., & Riberio-Navarrete, S. (2022). How Does Technology Enable Competitive Advantage? Reviewing State of the Art and Outlining Future Directions. *Journal of Competitiveness*, 14(4), 172–188. <https://doi.org/10.7441/joc.2022.04.10>

Schaltegger, S., Lüdeke-Freund, F., & Hansen, E. G. (2012). Business Cases for Sustainability: The Role of Business Model Innovation for Corporate Sustainability. *International Journal of Innovation and Sustainable Development*, 6(2), 95–119. <https://doi.org/10.1504/IJISD.2012.046944>

Schoenherr, T. (2012). The Role of Environmental Management in Sustainable Business Development: A Multi-country Investigation. *International Journal of Production Economics*, 140(1), 116–128. <https://doi.org/10.1016/j.ijpe.2011.04.009>

Sun, Y. (2024). Harnessing Technological Innovation for Competitive Advantage: A Strategic Framework. *Frontiers in Business, Economics and Management*, 13(3), 128–131. <https://doi.org/10.54097/fx56aw54>

Tarnovskaya, V. (2023). Sustainability as the Source of Competitive Advantage: How Sustainable Is It? In: P. N. Ghauri, U. Elg, S. M. Hånell (Eds), *Creating a Sustainable Competitive Position: Ethical Challenges for International Firms (International Business and Management*, Vol. 37, pp. 75–89). Emerald Publishing Limited. <https://doi.org/10.1108/S1876-066X20230000037005>

van Zanten, J. A., & van Tulder, R. (2021). Improving Companies' Impacts on Sustainable Development: A Nexus Approach to the SDGs. *Business Strategy and the Environment*, 30(8), 3703–3720. <https://doi.org/10.1002/bse.2835>

Waddock, S. (2020). Achieving Sustainability Requires Systemic Business Transformation. *Global Sustainability*, 3, e12. <https://doi.org/10.1017/sus.2020.9>

Yadav, G., Kumar, A., Luthra, S., Garza-Reyes, J. A., Kumar, V., & Batista, L. (2020). A Framework to Achieve Sustainability in Manufacturing Organisations of Developing Economies Using Industry 4.0 Technologies' Enablers. *Computers in Industry*, 122, 103280. <https://doi.org/10.1016/j.compind.2020.103280>