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Wstęp 

Zdecydowana większość (jeżeli nie wszystkie) wielkości rozważanych w procesie badania i 

analizy sytuacji społeczno-demograficzno-gospodarczej konkretnego kraju, grupy krajów 

bądź konkretnego regionu ma charakter zmiennych losowych. Tzn. są one funkcjami 

określonymi na przestrzeni probabilistycznej o wartościach należących do znanego zbioru. 

Jeżeli wartości te są ponadto kwantyfikowalne, to mamy wówczas do czynienia ze zmiennymi 

losowymi o wartościach liczbowych. Często badaniu poddawane są nie pojedyncze zmienne 

losowe ale ich stosownie dobrane „zestawy”, czyli zmienne losowe wielowymiarowe 

nazywane także wektorami losowymi. 

Klasycznie rozumiana statystyka matematyczna, w konsekwencji także klasyczna statystyka 

opisowa, wypracowały stosowną metodologię opisu, badania i analizy wektorów losowych. 

Charakterystyczną cechą tej metodologii jest wszakże fakt, że badając dany wektor losowy w 

istocie badaniu poddaje się jednowymiarową zmienną losową będącą odpowiednio 

zdefiniowaną funkcją zmiennych losowych stanowiących „współrzędne” owego wektora. 

W szeregu wcześniejszych prac autorzy niniejszego opracowania przedstawili propozycję 

odmiennego od klasycznego sposobu opisu oraz analizy wielowymiarowych rozkładów 

prawdopodobieństwa oraz wykorzystali zaproponowane nowe narzędzia do modelowania i 

badania tych wielkości, które mają charakter wielowymiarowych wektorów losowych.  

W prezentowanej obecnie pracy – należącej także do nurtu badań nad wielowymiarowymi 

charakterystykami społeczno-gospodarczymi – uzyskane wcześniej „nowe” narzędzia 

probabilistyczne wykorzystane zostaną do opisu oraz badania wybranych wektorowych 

charakterystyk polskiego rynku kapitałowego. Zasygnalizujmy już w tym miejscu, że 

współrzędnymi badanych wektorów będą poziomy indeksów giełdowych: WIG, WIG-20, 

WIG-Banki oraz WIG-Paliwa a także rentowności tych indeksów. Dane, które wykorzystamy 

w części merytorycznej artykułu (p.2) pochodzą z okresu od 4 stycznia 2016 r. do 7 lipca 

2017 r.  

W pierwszej, metodologicznej części opracowania (p.1) przypominamy – wskazując 

jednocześnie na konkretne pozycje literaturowe – probabilistyczne i statystyczne narzędzia, 
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czyli definicje oraz postaci zarówno samych parametrów wielowymiarowych rozkładów 

prawdopodobieństwa jak i ich estymatorów, których wartości, czyli oszacowania (oceny) 

parametrów zostaną wyznaczone i zinterpretowane w części merytorycznej. 

 

1. Wybrane parametry wielowymiarowych rozkładów prawdopodobieństwa oraz 

ich estymatory 

 

Podstawowymi charakterystykami rozkładu jednowymiarowej zmiennej losowej są jego 

momenty zwykłe oraz centralne [por. np. Feller 1969, Shao 2003]. W pracach [Tatar 1996, 

1999] – wykorzystując definicję potęgi wektora w przestrzeni z iloczynem skalarnym – 

zaproponowano wielowymiarowe uogólnienie tych pojęć. 

Niech  0NNr,n o   oraz niech 
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bywa niekiedy nazywana [por. np.  Bilodeau i Brenner 1999] momentem rzędu r  wektora 

losowego X  i oznaczana symbolem  rXE . Natomiast w pracy [Tatar 2002], przez analogię 

do przypadku jednowymiarowego, wyrażenie to określono jako moment absolutny rzędu r  

wektora losowego X .  

Rozważmy zatem wektor nR:X   należący do przestrzeni  r
nL  taki, że jego moment 

absolutny rzędu  r  jest skończony. Przyjmijmy ponadto, że 
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macierzą jego korelacji cząstkowych. 



Definicja 1. [Tatar 1996, 1999] Momentem zwykłym rzędu r  wektora losowego nR:X   

nazywamy wyrażenie    r

nr XEX , . 

 

Zauważmy, że moment zwykły rzędu pierwszego wektora losowego jest wektorem wartości 

oczekiwanych jego składowych, czyli      EXXmXn,1  ; moment ten będziemy nazywać 

wartością oczekiwaną wektora losowego X.   

 

Definicja 2. [Tatar 1996, 1999] Momentem centralnym rzędu r  wektora losowego 

nRX :  nazywamy wielkość     r

nr EXXEX , . 

 

Szczególne znaczenie ma moment centralny rzędu drugiego wektora X, czyli  

    2

,2 EXXEXn  . Moment ten będziemy nazywać wariancją wektora losowego X 

oraz oznaczać także symbolem XD2 . 

 

Za pomocą momentów centralnych wektora losowego definiujemy z kolei takie 

charakterystyki wielowymiarowego rozkładu prawdopodobieństwa jak współczynnik 

asymetrii czy kurtoza. 

 

Definicja 3. [Tatar 2000] Współczynnik asymetrii wektora losowego X  definiujemy jako 
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Zwróćmy uwagę, że zdefiniowana powyżej miara asymetrii rozkładu wektora losowego 

dostarcza także wartości wektorowej. Wskazuje ona zatem kierunek, na którym występuje 

ewentualna „skośność” (asymetria). Do pomiaru i wyrażenia jej wielkości można z kolei 

wykorzystać długość lub kwadrat wektora   X,n1 ,  czyli   X,n1   lub     XX 2
n,1n,1   . 

 

Definicja 4. [Budny 2009, Budny i Tatar 2009] Kurtozą wektora losowego X  nazywamy 

wielkość  X,n2  wyrażoną jako 
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W pracy [Budny 2012] wykazano, że kurtoza wektora losowego nR:N   o 

wielowymiarowym rozkładzie normalnym z tą samą wektorową wartością oczekiwaną i tą 

samą macierzą kowariancji jakimi charakteryzuje się wektor losowy X  przyjmuje postać 
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gdzie  ij   oznacza współczynnik korelacji składowych  iN  oraz jN wektora N . 

 

Wykorzystując pojęcie kurtozy w pracy [Budny 2014a]  zdefiniowano kolejną 

charakterystykę wielowymiarowego rozkładu prawdopodobieństwa. 

 

Definicja 5. [Budny 2014a] Współczynnikiem ekscesu (ekscesem) wektora losowego 

nR:X    nazywamy wielkość   X,n2  określona następująco 
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W badaniu wielowymiarowych wielkości losowych istotne znaczenie ma pomiar oraz analiza 

ich wzajemnych zależności. Jedną z ważniejszych miar w tym zakresie jest współczynnik 

korelacji wielowymiarowej. 

Niech mR:X   oraz  nR:Y   będą dowolnymi wektorami losowymi, przy czym o 

wektorze Y zakładamy, że   0YDY 2
n,2  . 

 



Definicja 6. [Budny 2017b]  Współczynnik korelacji wielowymiarowej (współczynnik 

korelacji wektorów losowych X oraz Y) definiujemy jako  
 
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Ważnymi własnościami współczynnika korelacji wielowymiarowej są jego nieujemność oraz 

niezmienniczość względem skali i translacji wektorów. Inną istotną własnością miary multi

jest brak jej symetrii; tzn. mogą istnieć pary wektorów X oraz Y, dla których zachodzi 

nierówność     X,YY,X multimulti   .  

 

W pracy [Budny 2017b] wykazano, że kwadrat zdefiniowanego powyżej współczynnika 

korelacji wielowymiarowej można – w sposób równoważny – zapisać jako 
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gdzie  iY,X  jest współczynnikiem korelacji wielokrotnej (wielorakiej) między zmienną 

losową iY  a wektorem losowym  m1 X,...,XX  , dla wszystkich  n,...,1i . 

 

W praktyce, w analizie wielowymiarowych danych empirycznych – badając ich 

charakterystyki oparte na definicji potęgi wektora – wykorzystuje się (podobnie jak to ma 

miejsce w przypadku jednowymiarowym) ich odpowiednie estymatory, czyli oszacowania 

uzyskane na podstawie dostępnej próby statystycznej. W pracach [Budny 2014b, 2017a, 

2017b] zaproponowano postać estymatorów momentów zwykłych, momentów centralnych, 

współczynnika asymetrii, kwadratu współczynnika asymetrii, kurtozy i ekscesu wektora 

losowego oraz wykazano, że są to statystyki zgodne i (co najmniej) asymptotycznie 

nieobciążone. Dla potrzeb dalszej części pracy przypomnijmy ich definicje.  

Niech w dalszym ciągu nR:X   będzie badanym  n-wymiarowym wektorem losowym 

oraz niech Nk  oznacza liczebność wykorzystywanej próby losowej. Sama zaś próba 

losowa prosta z rozkładu n wymiarowego niech będzie ciągiem wektorów 

nRX :1 , … , nk RX :  . 



Definicja 7. [Budny 2014b, 2017b] Estymatorem momentu zwykłego rzędu r wektora 

losowego (inaczej: momentem zwykłym rzędu r w próbie wielowymiarowej) nazywamy 

statystykę 
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Szczególne znaczenie ma estymator momentu zwykłego rzędu pierwszego (estymator 

wartości oczekiwanej), czyli n,1a  oznaczony także symbolem X . 

 

Definicja 8. [Budny 2017a, 2017b] Estymatorem momentu centralnego rzędu r wektora 

losowego (momentem centralnym rzędu r w próbie wielowymiarowej) nazywamy statystykę 
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W tym przypadku szczególnie istotny jest estymator momentu centralnego rzędu drugiego 

(tzn. estymator wariancji) n,2m . 

W konsekwencji pierwiastek kwadratowy z wariancji, czyli 
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jest estymatorem odchylenia standardowego. 

Estymatory momentów zwykłych i centralnych posłużyły do zdefiniowania kolejnych 

ważnych statystyk. 

Definicja 9. [Budny 2017b] Estymatorem współczynnika asymetrii wektora losowego 

(inaczej: współczynnikiem asymetrii w próbie wielowymiarowej) nazywamy wielkość  
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Naturalną konsekwencją powyższej definicji są postacie:  

estymatora długości wektora (współczynnika) asymetrii 
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estymatora kwadratu współczynnika asymetrii wektora losowego [Budny 2017b]:    

 2n,1n,1 ˆˆ   .      (6) 



Kolejne dwie definicje dostarczają postaci estymatorów współczynników koncentracji i 

spłaszczenia wielowymiarowego rozkładu prawdopodobieństwa. 

Definicja 10. [Budny 2017b] Estymatorem kurtozy wektora losowego (kurtozą w próbie 

wielowymiarowej) nazywamy statystykę  
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Definicja 11. [Budny 2017b] Estymatorem współczynnika ekscesu wektora losowego 

(współczynnikiem ekscesu w próbie wielowymiarowej) nazywamy wielkość 
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przy czym i
n,2m  oznacza „jednowymiarową” wariancję w próbie i tej współrzędnej wektora 

losowego, a 2
ijr  współczynnik korelacji cząstkowej w próbie między i tą oraz j tą 

współrzędną, dla wszystkich  n,...,1j,i  . 

 

Na koniec tej części pracy przypomnijmy postać estymatora zaproponowanej w definicji 6 

miary zależności wektorów losowych mR:X   oraz  nR:Y  . 

 

Definicja 12. [Budny 2017b] 

Estymatorem kwadratu współczynnika korelacji wielowymiarowej wektorów X oraz Y

nazywamy wielkość 
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R  jest estymatorem kwadratu współczynnika korelacji 

wielokrotnej między zmienną losową iY  a zestawem zmiennych losowych m1 X,...,X , czyli 

wektorem losowym  m1 X,...,XX  , dla wszystkich  n,...,1i . 

 

 



2. Wybrane charakterystyki polskiego rynku kapitałowego – analiza 

 

W tej części pracy wykorzystamy przypomniane w p.1 charakterystyki wielowymiarowych 

rozkładów prawdopodobieństwa (oraz ich estymatory) w badaniu kilku wektorów losowych 

wybranych z polskiego rynku finansowego. Współrzędnymi (składowymi) tych wektorów 

będą wielkości wymienione we wstępie do niniejszego opracowania. 

Próbę, którą wykorzystamy do uzyskania „ocen” wybranych parametrów rozkładu badanych 

wektorów stanowią dane pobrane ze strony www.money.pl . Są to poziomy „zamknięcia” w 

każdym dniu notowań w okresie od 4 stycznia 2016 r. do 10 lipca 2017 r. W przypadku 

danych nominalnych wykorzystujemy zatem próbę 380-elementową, zaś w badaniu 

rentowności wybranych instrumentów (indeksów giełdowych) – z oczywistych względów – 

próbę 379-elementową. Dla każdego z wyspecyfikowanych wektorów finansowych 

wyznaczymy estymatory następujących parametrów ich rozkładów:  

a) wartość oczekiwana (wektor); wg. wzoru (1) 

b) wariancja łączna (skalar); wg. wzoru (2) 

c) odchylenie standardowe łączne (skalar); wg. wzoru (3) 

d) współczynnik asymetrii (wektor); wg. wzoru (4) 

e) norma/długość współczynnika asymetrii (skalar); wg. wzoru (5) 

f) kwadrat współczynnika asymetrii (skalar); wg. wzoru (6) 

g) kurtoza; wg. wzoru (7) 

 oraz  

h) współczynnik ekscesu; wg. wzoru (8) . 

W celach poglądowych, poznawczych oraz porównawczych w każdym przypadku 

wyznaczymy także: macierz kowariancji, macierz współczynników korelacji cząstkowych oraz 

klasycznie rozumiane następujące charakterystyki rozkładów brzegowych: wartość 

oczekiwana, wariancja, odchylenie standardowe, współczynnik asymetrii, kurtoza oraz 

współczynnik ekscesu. 

Dla wybranych par badanych finansowych wektorów losowych wyznaczymy także (wg. 

wzoru (9)) estymator kwadratu współczynnika korelacji wielowymiarowej jako jedną z miar 

ich zależności. 
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2.1.  

Niech 1X  oznacza wartość indeksu WIG, 2X - wartość indeksu WIG-20, 3X - wartość 

indeksu WIG-Banki oraz 4X - wartość indeksu WIG-Paliwa na Warszawskiej Giełdzie 

Papierów Wartościowych. Jako pierwszy poddamy badaniu wektor postaci 

 4321 X,X,X,XX  . Korzystając z danych, o których mowa we wprowadzeniu do p. 2, tj. z 

próby 380-elementowej, otrzymujemy następujące wyniki: 

a) macierz kowariancji 





















1169543,61630121,41220345,676361990,66

630121,41413766,16134004,303773372,28

220345,67134004,3046583,961265614,20

6361990,663773372,281265614,2036590093,7

X  

b) macierz współczynników korelacji cząstkowej 





















10,90580,94400,9725

0,905810,96520,9698

0,94400,965210,9694

0,97250,96980,96941

RX  

c) charakterystyki rozkładów brzegowych wektora X 

Tabela 1: Estymatory charakterystyk rozkładów brzegowych 

Charakterystyka  WIG WIG-20 WIG-Banki WIG-Paliwa 

Wartość oczekiwania 50 976,24 1 955,92 6 376,48 5 323,85 

Wariancja 36 590 093,47 46 583,96 413 766,16 1 169 543,61 

Odchylenie standardowe 6 048,98 215,83 

 

643,25 

 

1 081,45 

 Współczynnik asymetrii 0,6267 0,6909 0,5168 0,8203 

Kurtoza 1,8384 1.9625 1,9341 2,1897 

Współczynnik ekscesu -1,1616 -1.0375 -1,0659 -0,8103 

Źródło:  Opracowanie własne 

d) charakterystyki łączne wektora X 

Tabela 2: Estymatory charakterystyk łącznych rozkładu wektora losowego X  

   (opartych na definicji potęgi wektora) 

Charakterystyka Wartość estymatora 

EX  (50 976,24; 1 955,92; 6 376,48; 5 323,85) 

XD2
 

38 219 987,20    

Odchylenie standardowe 6 182,23 

  Xn,1  (0,6162; 0,0238; 0,0625; 0,1197) 

Norma (długość) n,1  0,6313 

  Xn,1  0,3985 

 Xn,2  1,8419 



 X,n2  -1,1488 

Źródło:  Opracowanie własne 

 

Interpretacja wyników: 

(i) Wariancja łączna wektora losowego X jest równa sumie wariancji rozkładów 

brzegowych. Fakt ten nie jest zaskoczeniem ponieważ w pracach (Tatar 1996; 

Tatar 1999) udowodniono prawdziwość tego związku w przypadku każdego 

wektora losowego. 

(ii) Największy wpływ na wartość łącznego odchylenia standardowego wektora 

losowego X ma odchylenie standardowe zmiennej losowej 1X , czyli poziomu 

indeksu WIG. 

(iii) Każdy z rozkładów brzegowych wektora X charakteryzuje się wyraźną asymetrią 

prawostronną („dodatnią”). Najbardziej „wydłużone prawe ramię” ma rozkład 

zmiennej „WIG-Paliwa”  (0,8203) zaś najmniej rozkład indeksu „WIG-Banki”. 

(iv) Łączna asymetria wektora X wyrażona czterowymiarowym wektorem 

0,1197) ;0,0625 ;0,0238 ;(0,6162n,1   również wskazuje na „dodatnią skośność” 

jego rozkładu na każdym z czterech kierunków. Jednak zdecydowanie największą 

wartość ma ta współrzędna wektora asymetrii, która odpowiada „kierunkowi” 

(zmiennej losowej) WIG. Co więcej, długość wektora asymetrii łącznej (0,6313) 

jest zbliżona do wartości współczynnika asymetrii brzegowej zmiennej losowej 

WIG. To spostrzeżenie skłania do konkluzji, że próba analizy asymetrii wektora 

losowego poprzez analizę asymetrii jego rozkładów brzegowych może prowadzić 

do nieuprawnionych wniosków. W rozważanym przez nas przypadku takie 

podejście mogłoby – błędnie – sugerować, że wektor X będzie charakteryzował się 

największą asymetrią (skośnością) na kierunku WIG-Paliwa. Możemy zatem 

sformułować – skądinąd zupełnie „zdroworozsądkowy” – wniosek, że analizując 

asymetrię rozkładów wielowymiarowych nie wystarczy zbadać jak bardzo (i w 

którą stronę) „wydłużone” są ramiona rozkładów brzegowych ale trzeba nadto 

zmierzyć jak duża „masa prawdopodobieństwa” mieści się pod owymi ramionami, 

a na to pozwala właśnie współczynnik asymetrii łącznej  n,1  . 

(v) Ostatnie dwa wskaźniki, tzn. kurtoza oraz (będący jej konsekwencją) 

współczynnik ekscesu mogą być interpretowane jako miary odpowiednio 

„spłaszczenia” badanego rozkładu oraz jego różnienia się („odbiegania”) od 

rozkładu normalnego o tej samej wartości oczekiwanej oraz wariancji. 



Interpretacja ta odnosi się zarówno do rozkładów jednowymiarowych jak i 

wielowymiarowych. W przypadku badanego przez nas wektora indeksów 

giełdowych największym spłaszczeniem charakteryzuje się rozkład brzegowy 

WIG-Paliwa (2,1897) chociaż jest on najmniej (spośród wszystkich czterech 

rozkładów brzegowych) „odbiegający” od rozkładu normalnego (eksces równy -

0,8103).  

Kurtoza łącznego rozkładu wektora X  przyjmuje wartość (1,84190) zbliżoną do 

wartości kurtozy głównego indeksu WGPW, czyli WIG-u. Podobnie rzecz się ma 

w odniesieniu do wskaźnika ekscesu: czterowymiarowy rozkład wektora indeksów 

giełdowych różni się od odpowiadającego mu rozkładu normalnego w 

przybliżeniu w tym samym stopniu (-1,1488) w jakim rozkład WIG-u różni się od 

rozkładu normalnego o wartości oczekiwanej 50 976,24 oraz odchyleniu 

standardowym  6048,98.  

Interpretując wartość estymatora współczynnika ekscesu należy ponadto zwrócić 

uwagę na jego znak. Ujemna wartość wskazuje na to, że „odbieganie” od rozkładu 

normalnego ma miejsce przede wszystkim dla realizacji bardziej odległych od 

wartości oczekiwanej (czyli w przypadku jednowymiarowym na tzw. „ogonach”) 

zaś dodatni współczynnik ekscesu świadczy o różnicach między badanym 

rozkładem a rozkładem normalnym dla realizacji bliskich wartości średniej.  

 

2.2. 

Przy oznaczeniach z p. 2.1 będziemy teraz rozważać wektor losowy  21 X,XY  , czyli 

wektor którego brzegowymi zmiennymi losowymi są WIG oraz WIG-20. Korzystając z tej 

samej próby historycznej (ciąg 380-elementowy) wyznaczymy estymatory charakterystyk 

wymienionych na początku p. 2. Stosując stosowne formuły otrzymujemy: 

 

a) macierz kowariancji 











46583,961265614,20

1265614,20736590093,4
Y  

b) macierz współczynników korelacji cząstkowej 











10.9694

0.96941
RY  

c) charakterystyki rozkładów brzegowych wektora Y; wartości estymatorów zostały 

obliczone w p. 2.1 i znajdują się w Tabeli 1. 



d) charakterystyki łączne wektora Y 

 

Tabela 3: Estymatory charakterystyk łącznych rozkładu wektora losowego Y  

         (opartych na definicji potęgi wektora) 

Charakterystyka Wartość 

EY  (50 976,24 ; 1 955,92) 

YD2
 

36 636 677,43 

 Odchylenie standardowe 6 052,82 

 Yn,1  (0,6264 ; 0,0242) 

 Norma (długość) n,1  0,6269 

 Yn,1  0,3930 

 Yn,2  1,8384 

 Y,n2  -1,1613 

        Źródło:  Opracowanie własne 

 

Interpretacja  wyników 

(i) Podobnie jak w przypadku wektora badanego w p. 2.1 wariancja łączna jest liczbą, 

czyli skalarem nie zaś wektorem. Jest to immanentna własność wariancji liczonej 

według nowej koncepcji charakteryzacji wielowymiarowych rozkładów 

prawdopodobieństwa. Co więcej, według tej koncepcji wszystkie momenty rzędu 

parzystego są skalarami, zaś wszystkie momenty rzędu nieparzystego są 

wektorami. I znowu: nie powinno to budzić żadnego zaniepokojenia; przeciwnie, 

skoro momenty rzędu nieparzystego mają służyć (i służą) do definiowania 

parametrów położenia rozkładu, to w przestrzeni wielowymiarowej powinny być 

wektorami; skoro zaś momenty rzędu parzystego wykorzystuje się do określania 

parametrów rozproszenia danego rozkładu, to – także w przestrzeni 

wielowymiarowej – powinny być skalarami (liczbami). 

(ii) Również teraz, współczynniki asymetrii obliczone oddzielnie dla obydwu 

rozkładów brzegowych mogłyby skłaniać do błędnego wniosku, że badany wektor 

losowy jest „bardziej asymetryczny” na kierunku 2X , tzn.WIG-20,  (0,6909 vs 

0,6267). Tymczasem wyznaczony łączny (wektorowy) współczynnik (0,6264 ; 

0,0242) wskazuje na zdecydowaną skośność na kierunku WIG. O przyczynach 

takiego stanu rzeczy pisaliśmy interpretując wyniki uzyskane w p. 2.1. 

(iii) Rozkład prawdopodobieństwa wektora dwóch indeksów giełdowych rozważanego 

w tym punkcie pracy także charakteryzuje się znacznym spłaszczeniem (kurtoza 



równa 1,8384) oraz „odbieganiem” od normalności (-1,1613) przede wszystkim 

dla tych realizacji, które są dość odlegle od wartości oczekiwanej (ujemny 

wskaźnik ekscesu). 

(iv) Dwuwymiarowość wektora Y stwarza możliwość graficznego przedstawienia jego 

rozkładu. Poniżej prezentujemy trzy wykresy: histogram rozkładu wektora Y 

skonstruowany w oparciu o przywoływaną już 380-elementową próbę; 

dwuwymiarowy rozkład normalny o tej samej wartości oczekiwanej oraz 

wariancji; a także jednoczesne zestawienie obydwu grafik. Wykresy te 

potwierdzają słuszność sformułowanych wcześniej wniosków.  

 

Niestety, z przyczyn oczywistych, nie jest możliwe graficzne zobrazowanie 

rozkładu (oraz jego charakterystyk) czterowymiarowego wektora badanego w 

poprzednim punkcie pracy – wymagałoby to sporządzenia wykresu w przestrzeni 

pięciowymiarowej (!). 

 

Rysunek 1 Histogram rozkładu wektora Y. 

 

Źródło: opracowanie własne 



Rysunek 2 Dwuwymiarowy rozkład normalny o wektorze wartości oczekiwanych EY i macierzy 

kowariancji Y . 

 

Źródło: opracowanie własne 

Rysunek 3 Zestawienie histogramu oraz dwuwymiarowego rozkładu normalnego. 

 

Źródło: opracowanie własne 



2.3. 

Niech w dalszym ciągu obowiązują ustalenia z punktu 2.1 oraz niech  21 X,XY   i  

 43 X,XZ  . Będziemy zatem rozważać dwa dwuwymiarowe wektory:  20WIG,WIGY   

oraz  PaliwaWIG,BankiWIGZ  . Zbadamy ich wzajemną zależność obliczając – według 

wzoru (9) – estymator kwadratu wielowymiarowego współczynnika korelacji. Otrzymujemy: 

  0,9473Z,Y2
multi        oraz       0,9898Y,Z2

multi    . 

Powyższy rezultat potwierdza, że wykorzystywany w niniejszej pracy współczynnik korelacji 

(jako miara zależności wektorów losowych) nie ma własności symetrii. I nie należy w tym 

upatrywać niczego zaskakującego: pozostając we wzajemnym związku wektory Y i Z pełnią 

w nim różne role, a zatem „siła” zależności Y od Z nie musi być (i na ogół nie jest) taka sama 

jak „siła” zależności Z od Y. Uwaga powyższa obowiązuje także w przypadku zmiennych 

losowych jednowymiarowych: jeżeli – na przykład – zysk danego przedsiębiorstwa w jakimś 

stopniu zależy od ogólnego poziomu rynkowych stóp procentowych, to przecież wysokość 

stóp procentowych zapewne w innym stopniu (jeżeli w ogóle) zależy od zysku tego 

konkretnego przedsiębiorstwa. W rozważanym przez nas przypadku okazuje się, że obie 

zależności (Y od Z  oraz  Z od Y)  są bardzo silne, co – biorąc pod uwagę składowe oraz 

strukturę tych wektorów Y  i Z  – nie jest zaskoczeniem. Nie zaskakuje także fakt, że w tym 

przypadku zależność między Z  a  Y  jest wyraźnie silniejsza niż zależność między Y  a  Z . 

 

2.4. 

Niech w dalszym ciągu  4321 X,X,X,XX   będzie wektorem ustalonym na początku punktu 

2.1, czyli wektorem czterech wybranych indeksów notowanych na WGPW.  Określmy 

ponadto wektor  4321 U,U,U,UU  , gdzie 1U  jest dobową (lepiej: jednosesyjną) 

rentownością indeksu WIG, 2U - dobową rentownością indeksu WIG-20, 3U  - dobową 

rentownością indeksu WIG-Banki i wreszcie 4U - dobową rentownością wskaźnika WIG-

Paliwa. Rozważamy zatem czterowymiarowy wektor rentowności (stóp zwrotu) wybranych 

indeksów. Ponieważ mówimy o klasycznie rozumianych rentownościach jednosesyjnych, 

więc historyczna próba, którą wykorzystamy do dalszych obliczeń jest próbą 379-

elementową.  

Postępując podobnie jak dotychczas oraz korzystając z odpowiednich formuł otrzymujemy: 

a) macierz kowariancji 























0.0002220.0000930.0001140.000091

0.0000930.0002050.0001450.000118

0.0001140.0001450.0001290.000103

0.0000910.0001180.0001030.000086

U  

b) macierz współczynników korelacji cząstkowej 





















10.43810.67650.6587

0.438110.89370.8892

0.67650.893710.9825

0.65870.88920.98251

RU  

 

c) charakterystyki rozkładów brzegowych wektora U 

Tabela 4: Estymatory charakterystyk rozkładów brzegowych 

Charakterystyka  rent. WIG rent. WIG-20 
rent. WIG-Banki rent.WIG-

Paliwa 

Wartość oczekiwania 0,000818 0,000706 0,000659 0,001463 

Wariancja 0,000086 0,000129 0,000205 0,000222 

Odchylenie standardowe 0,009274 0,026571 0,014318 0,014900 

Współczynnik asymetrii -0,2429 -0,0012 0,3592 0,0646 

Kurtoza 4,6668 3,8779 4,9574 3,5143 

Współczynnik ekscesu 1,6668 0,8779 1,9574 0,5143 

Źródło:  Opracowanie własne 

 

d) charakterystyki łączne wektora U 

Tabela 5: Estymatory charakterystyk łącznych rozkładu wektora losowego U                 

  (opartych na definicji potęgi wektora) 

Charakterystyka  Wartość 

EU  (0,000818 ; 0,000706 ; 0,000659 ; 0,001463) 

UD2
 0,000641 

Odchylenie standardowe 0,025318 

 Un,1  (-0,002488 ; 0,023501 ; 0,072290 ; 0,004629) 

Norma (długość) n,1  0,076197 

 Un,1  0,005806 

 Un,2  3,0710 

 U,n2  0,7748 

Źródło:  Opracowanie własne 

 



 

Interpretacja uzyskanych wyników: 

(i) Rozważając odrębnie rozkłady brzegowe wektora U zauważamy, że największą 

asymetrią (prawostronną) charakteryzuje się zmienna losowa „rent.WIG-Banki” 

(0,3592); kolejną zmienną jest pod tym względem „rent.WIG” (-0,2429); 

najmniejszą asymetrię brzegową wykazuje „rent.WIG-20” (-0,0016). Z kolei 

asymetria łączna (wektorowa) wskazuje, że wprawdzie wektor U charakteryzuje 

się największą skośnością także na kierunku „rent.WIG-Banki” (0,0723) ale 

kolejnym jest kierunek  „rent.WIG-20” ze skośnością równą 0,0235. 

(ii) Kurtoza łączna wektora U wynosi 3,071 i jest zdecydowanie mniejsza niż kurtoza 

każdego z rozkładów brzegowych. Oznacza to, że łącznie rozpatrywany wektor 

rentowności indeksów giełdowych nie wykazuje aż tak dużego „spłaszczenia” jak 

każdy z jego rozkładów brzegowych. 

(iii) Miara „odbiegania” rozkładu łącznego wektora rentowności od rozkładu 

normalnego (współczynnik ekscesu) wynosi 0,7748 i jest znacznie niższa od 

ekscesu wyznaczonego w p.2.1 dla wektora wartości nominalnych wybranych 

indeksów. Potwierdza to słuszność podejścia stosowanego w badaniu 

jednowymiarowych cen aktywów oraz ich rentowności, zgodnie z którym o ile 

często uzasadnionym jest założenie o normalności rozkładu stóp zwrotu, to na 

ogół błędnym byłoby analogiczne przypuszczenie w odniesieniu do cen 

nominalnych rozważanych aktywów. 

 

2.5. 

Niech  4321 U,U,U,UU   będzie w dalszym ciągu wektorem rentowności wybranych 

indeksów WGPW określonym w p. 2.4. Rozważmy teraz wektor  21 U,UV  , czyli 

 20WIG.rent,WIG.rentV  . Wykorzystując w dalszym ciągu 279-elementowy ciąg 

danych historycznych otrzymujemy następujące estymatory wybranych charakterystyk: 

a) macierz kowariancji 











0.0001290.000103

0.0001030.000086
V  

b) macierz współczynników korelacji cząstkowej 











10,9825

0,98251
RV  



c) charakterystyki rozkładów brzegowych wektora V; wartości ich estymatorów 

zostały obliczone w p. 2.4 i znajdują się w Tabeli 4. 

d) charakterystyki łączne wektora V 

 

Tabela 6: Estymatory charakterystyk łącznych rozkładu wektora losowego V                 

 (opartych na definicji potęgi wektora) 

Charakterystyka  Wartość 

EV  (0,000818 ; 0,000706) 

VD2
 0,000214 

Odchylenie standardowe 0,014629 

 Vn,1  (-0,088765 ; -0,047867) 

Norma (długość) n,1  0,100849 

 Vn,1  0,010171 

 Vn,2  4,1276 

 V,n2  1,1609 

Źródło:  Opracowanie własne 

 

Interpretacja uzyskanych wyników: 

(i) Kolejny raz zauważamy, że łączny wektor asymetrii  Vn,1  wskazuje na zupełnie 

inny jej kierunek niż ten, który mógłby być odczytany z współczynników 

asymetrii rozkładów brzegowych. Także „poziom (wielkość)” asymetrii łącznej 

jest różna od poziomu asymetrii rozkładów brzegowych. 

(ii) Kurtoza oraz współczynnik ekscesu rozkładu wektora V sugerują, że znacznie 

bardziej „odbiega” on od rozkładu normalnego niż było w przypadku rozważanego 

w p. 2.4 wektora U. Fakt ten można także dostrzec na poniższych ilustracjach: 

zauważamy, że histogram rozkładu wektora V jest zdecydowanie bardziej 

„spłaszczony” niż rozkład normalny o tej samej wartości oczekiwanej oraz 

wariancji. 



Rysunek 4 Histogram rozkładu wektora V. 

 

Źródło: opracowanie własne 

Rysunek 5 Dwuwymiarowy rozkład normalny o wektorze wartości oczekiwanych EV  i macierzy 

kowariancji V . 

 

Źródło: opracowanie własne 



Rysunek 6 Zestawienie histogramu oraz dwuwymiarowego rozkładu normalnego. 

 

Źródło: opracowanie własne 

 

2.6. 

W ostatnim punkcie prowadzonej analizy przyjmijmy, że  21 U,UV   oraz  43 U,UW  , 

gdzie 4321 U,U,U,U  mają znaczenie nadane im w p. 2.4. Rozważamy zatem dwa 

dwuwymiarowe wektory:  

 20WIG.rent,WIG.rentV           oraz     PaliwaWIG.rent,BankiWIG.rentW  .  

Obliczając estymatory kwadratu współczynników korelacji wielowymiarowe (korzystając z 

wzoru (9)) otrzymujemy: 

   0,6249W,V2
multi    oraz      0,8919V,W2

multi   . 

Komentarz jaki można uczynić do uzyskanych wyników jest analogiczny do tego jaki 

sformułowaliśmy na zakończenie p. 2.3 . 

 

Uwagi końcowe i perspektywy badawcze 

Zaprezentowane w pracy przykłady wykorzystania łącznych charakterystyk 

wielowymiarowych rozkładów prawdopodobieństwa pozwalają sformułować wniosek, że 

owo odmienne od klasycznego podejście do analizy rozkładów wektorów losowych pozwala 



wierniej opisać badaną rzeczywistość niż badanie ich jednowymiarowych wektorów 

losowych. Odnosi się to m.in. do takich ich charakterystyk jak asymetria, kurtoza czy 

współczynnik ekscesu. W szczególności eksces rozkładu wielowymiarowego może być 

ważną przesłanką na rzecz ewentualnego formułowania hipotezy o jego normalności. 

Oczywiście, taka hipoteza musiałaby zostać poddana stosownej weryfikacji. Do tego zaś 

potrzebne bądą odpowiednie testy statystyczne. Konstrukcja takich testów jawi się jako 

kolejne zadanie w procesie rozwijania koncepcji „nowej charakteryzacji wielowymiarowych 

rozkładów prawdopodobieństwa”. Owszem, zadanie to nie musi być łatwe ale – zdaniem 

autorów – dogodnym punktem wyjścia do jego realizacji mogą być uzyskane już wcześniej 

postaci estymatorów szeregu charakterystyk. Estymatory te z powodzeniem zostały 

wykorzystane także w niniejszym opracowaniu. 

 

 

Publikacja została sfinansowana ze środków przyznanych Wydziałowi Finansów i Prawa 

Uniwersytetu Ekonomicznego w Krakowie w ramach dotacji na utrzymanie potencjału 

badawczego. 
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