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Abstract

The paper presents a production system in the Debreu model of general equilibrium. 
According to Schumpeter, economic development is possible only on the strength of 
innovations being introduced. This process provides a sequence of optimal production 
plans, corresponding to each stage of the innovative evolution. The paper characterises 
the sequence of optimal plans and provides the conditions for its convergence. 
Moreover, the limiting production plan is shown to be the producer’s optimum in the 
final state.
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1. Introduction

To the memory of Professor Andrzej Malawski

The paper examines the production system of the Debreu economy and focus 
on its Schumpeterian evolution. The goal of a producer is to maximise profit over 
the set of production. The success of all market agents is possible if and only if 
there exists a price system common to everybody. In the second part of the paper, 
the formal description of the production system and the framework of the Debreu 
model are briefly reviewed.

J. A. Schumpeter (1912) determined two forms of economic life: circular flow 
and economic development. The first form corresponds to a state when all the 
processes and agents follow the known economic rules, even if some new good 
appears in the market. The second form, economic development, can be obtained 
via creative destruction. We review the basic facts from this theory in the second 
part of the paper. In the same part we briefly recall some results from the papers of 
B. Ciałowicz and A. Malawski (2011) and A. Lipieta and A. Malawski (2016), who 
attempted to describe formally the Schumpeterian mechanisms. This is done to 
justify the approach in the third part, where we use the fact that in the production 
system of the Debreu model the Schumpeterian evolution is observed via changing 
sets of production. However, the above authors’ works define the cumulative and 
innovative extensions of producer’s system, requiring in the definitions that the 
producers must increase their profits. One question remains open here: whether 
or not a producer who in each stage of the transitions of the economy maximises 
his profit will ultimately maximise their profit. The main goal of the paper is to 
answer this question. 

The main results of this paper (theorems 1 and 2) include: in Schumpeterian 
evolution, producers are not only better off (as definitions established by 
A. Malawski and B. Ciałowicz emphasised), but also the final best production 
plan may be achieved by realising, step-by-step, the best production plans in the 
particular stages of evolution.

The results are based on previously obtained theorems for the linear 
programming problem we described in terms of the Kuratowski convergence 
(see Denkowska, Denkowski & Kornafel 2017). The next two parts briefly present 
the definitions and summarise the main properties of this kind of convergence of 
sets and comment on the requisite mathematical theorems.

The work done for this paper has only a theoretical character and is intended to 
complete the mathematical description of economic theory of the Schumpeterian 
evolution in the Debreu model. However, practitioners may also profit from our 
results: Mathematically, the problem of maximising the producers’ profits over 
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sets, which are polytopes, is a linear programming problem. A well-known 
numerical method of solving it is called the simplex method, which has a rich 
bibliography (see e.g. Bertsimas, Tsitsiklis & Tsitsiklis 1997, Bartels & Golub 
1969, Karmarkar 1984). The practical conclusion of our result is the following: 
a convergent sequence of optimal production plans (found in each stage of 
evolution by the simplex method) has a limit that is the optimum for limiting 
the problem. Secondly, despite the possible numerical errors in computations, 
the calculated result is close to actual optimum.

2. Production System in the Debreu Model

In his monumental 1959 work, G. Debreu described the general equilibrium 
model using a strictly mathematical apparatus. The linear space Rl (with fixed 
l N! ) is interpreted as the l-dimensional space of commodities and prices. 
The model formally consists of production and consumption systems, determined 
by the behaviour of two groups of agents: producers j B!  and consumers i C!  
(with a finite number of members in each group). The consumer is characterised by 
his preferences and budget, his goal being to maximise utility from consumption 
over the budget set. The jth producer is described by his production set  
Y Rj

l1  (determining the production abilities and available technology) and aims 
to maximise his profit, i.e.:

 : .max max p yj j y Y j
j j

$p p= =*
!

Mathematically, it is a problem of maximising the linear functional p y j$  over 
the given set Yj. Moreover, when the set Yj is a cone (as we see in a moment in 
the assumptions), the maximisation problem is merely simple linear programming 
problem.

G. Debreu joins those two sectors and provides the conditions under which it is 
possible to achieve equilibrium. The assumptions for the production system, which 
is the heart of the matter here, are reviewed below.

For any producer j, production set Yj satisfies the following conditions (see 
Debreu 1959):

 a) Y Rj
l1  is closed (meaning that if for any the production plan y Yj

n
j!  is 

possible for jth producer and ,lim y yn j
n

j
0="3  then ,y Yj j

0 !  i.e. the limiting plan can 
also be realised),

b) Y0 j!  (the possibility of not producing),
c) Y 0Rj

l+ 1+ " , (i.e. free production is impossible without inputs),
d) Y Y 0–j j+ 1^ h " , (irreversibility),
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e) Y Y Yj j j1+  (any two production plans together are also possible for 
production),

f) Y j is convex (any combination of two production plans is also possible 
for production),

g) Y j is a cone with its vertex at (under the assumption of constant returns 
to scale),

h) , whereY Y Y YRl n1– g1 = + +  (it is possible for all producers together to 
dispose of all commodities).

As we said, for a given price system p Rl! , a producer aims to maximise 
profit. It is known that maximisation may not be possible for any price system, 
so the following is defined:

 : : .there exists maxT p p yRj
l

y Y j
j j

$!=
!
^ h% /

For a production set that is a cone, the set Tj is its normal cone. The correspondence 
attaining the maximisers to the given price p T j!  is:

 : pRj
leη  ↦ : .maxy p y p y Yj j y Y k j

k k
$ $ 1=

!
^ h% /

In other words, for arg maxp T n p pj j j! p=^ ^h h. In general, if Yj is a polytope, 
the set pjη ^ h can be identified with the set of vertices of the production set.

In such a setting, if only + Tj B j Q!! , it is possible to prove the existence of 
the price system, which allows all the producers in the economy to maximise 
their profits and – in the further perspective of the model and with additional 
requirements toward the consumption system – the existence of equilibrium in the 
whole economy. The assumptions listed above remain in force in the next parts of 
the paper.

3. Schumpeterian Evolution

In his 1912 work, J. Schumpeter distinguished two forms of economic life: 
circular flow and economic development. Circular flow is the state of the economy, 
in which all the processes go along known trajectories, as determined by economic 
laws. It could be understood as stagnation. However, an economy undergoes 
constant evolution, which to J. Schumpeter meant evolution is driven by creative 
destruction, or the natural process of introducing innovations and eliminating 
existing goods, production technologies, markets, etc. In 1950, J. Schumpeter 
wrote: “The fundamental impulse that acts and keeps the capitalistic engine in 
motion comes from the new consumer goods, the new method of production, 
the new forms of industrial organization that capitalist enterprise creates. 
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(…) The opening up of new markets, foreign or domestic, and the organizational 
development (…) illustrate the same process of industrial mutation – if I may use 
that biological term – that revolutionizes the economic structure from within, 
incessantly destroying the old one, incessantly creating a new one” (Schumpeter 
1950, p. 83). 

J. Schumpeter never explained how creative destruction changes circular flow. 
With his research group at Cracow University of Economics and colleagues 
from other countries A. Malawski, in a number of publications, has attempted 
to describe formally how it would happen (see Innovative Economy… 2013) and 
references therein). In particular, B. Ciałowicz and A. Malawski (2011) introduced 
the definitions of cumulative and innovative extensions of a production system. 
In the definitions cited below, the “tilde” symbol denotes the quantities, functions 
and correspondence after the change introduced.

Definition 1 (Ciałowicz & Malawski 2011). A production system  
, , , , ,P B y pRl η π=u u u u u u^ h is called a cumulative extension of a production system  
, , , , ,P B y pRl η π= ^ h, briefly PP c1 u , if:

1) l l# u;
2) p proj pRl# u^ h, where proj denotes orthogonal projection and the inequality 

between vectors is understood as:

 ;p q i p qi i+6# #:

3) B B1 u  and for every b B! :
a) Y proj Yj jRl1 u^ h,
b) proj pj jRl1η ηu u^ ^ hh,
c) p pj j#p pu u^ ^h h.

This definition describes the situation when creative destruction is obtained 
via the creation of a new good (condition 1, which describes possible extension 
of the dimension of the commodity and price spaces) or via the introduction of 
a new technology (condition 3a) and the presence of a new market agent (if B B= uY ),  
who actually might be the source of the two listed previously. In particular, if l l= u 
and B B= u , the projections are identity mappings, so a change may be obtained 
only by extending the production set Yju , but all the previously used technologies 
are still in use. This extension may be done, for instance, by acquiring additional 
machines. The whole economic environment therefore remains unchanged and 
the cumulative extension is intended to model the circular flow in economics. 
B. Ciałowicz and A. Malawski (2011) also defined a strong cumulative extension of 
the production system, considering the extensions with respect to different aspects 
(like number of commodities, price system, etc.) and emphasising the character of 
circular flow in them.
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Definition 2 (Ciałowicz & Malawski 2011). A production system 
, , , , ,P B y pRl η π=u u u u u u^ h  is called an innovative extension of a production system 
, , , , ,P B y pRl η π= ^ h, briefly PP i1 u , if:

1) l l# u;
2) p proj pRl= u^ h;
3) 7 j̃  :B j B6! !u

a) projRl  ( Ỹj̃  ) Y j1Y ,
b) projRl ( η̃ 

j̃  ) p pj1 ηu Y^ ^h h,
c) pj #p ^ h  p̃ 

j̃  pu^ h.
Remark. The producers who satisfy condition 3 are called innovators.
The definition of innovative extension emphasises the presence of an innovator  

j̃, who may introduce a new good or open a new market (if l l< u in condition 1),  
or may introduce a new technology (method) of production (condition 3a). 
In contrast to the cumulative extension, the innovative extension exacts the 
introduction of a new good or new technology and it is possible to rule out an 
unnecessary or no longer productive technology from the new set of production Ỹj̃  .

A. Lipieta and A. Malawski (2016) proposed to design economic mechanisms 
to describe an economic system’s evolution from an arbitrary one to its cumulative 
extension (price-preserving mechanism) and evolution to the innovative extension 
(qualitative mechanism). They study the relationship between these extensions and 
use the language of mechanism design developed by L. Hurwicz and S. Reiter (2006). 
One of the elements of their description is the transition mapping : ,T 0 1 "6 @  ℘j,  
where T P0 j=^ h  and T P1 j= u^ h . The set ℘j denotes all the possible production 
systems. The authors showed (Lipieta & Malawski 2016) that it is possible 
to design transitions that will lead to cumulative and innovative extensions, 
respectively. 

A question that does not appear in the analysis is whether or not a producer who 
in each stage of those transitions maximises his profit will ultimately maximise 
profit. From a mathematical point of view, the answer is not obvious. Definitions 
1 and 2 assure only that the final profit will not be smaller than it was at the 
beginning. In the next part of the paper, a theorem showing that this convergence 
is assured is formulated using the language of Kuratowski convergence, which 
makes it possible to describe interesting phenomenon relatively easily. To clarify 
the issue, the necessary mathematical definitions and theorems are written down 
in the 5th and 6th sections. 
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4. The Dynamics of the Producers’ Optima in Schumpeterian 
Evolution

Let us consider the mapping (transition) : ,T 0 1 "6 @  ℘j, which describes 
the evolution of the production system P T 0j = ^ h to another state P T 1j =u ^ h. 
In particular, the final state may be a cumulative or innovative extension of the 
production system Pj.

For any time moment ,t 0 1! 6 @ we deal with the production system 
, , , , ,P B y pRj

t l t t t tt
η π= ^ h, in which the jth producer maximises his profit j

tp  over 
the production set Y j

t . The price vectors pt t^ h  by assumption create a convergent 
sequence and :lim p pt

t
1

1=" . The prices pt and p1 are assumed to be such vectors 
that and andp pj

t t
j
1 1Q Qηη = =Y Y^ ^h h . Then, as shown by arguments from the 

Debreu model, there exists y pj
t

j
t t! η) ^ h.

In the theorems cited in part 6, all the sets are subsets of the same vector 
space Rl. Here, due to the important role of dimension (determining the number 
of goods in the market), constant l is quite an unpleasant inconvenience and would 
limit us only to the case when the dimension is not increased in the Schumpeterian 
evolution. We overcome this difficulty by the following argument. When lt^ h is 
a non-constant sequence, we assume it to be bounded (which is economically 
reasonable as it is impossible to create or develop an infinite number of goods or 
technologies in a given time period). It is then enough to define : supl l,t

t
0 1= ! 6 @  and 

identify the vectors and sets from Rl
t
 with their embeddings in Rl. To be clear:

1) the vector p Rt lt!  will be identified with the vector 

 
: ,

times

p p

l l

0 0

–

Rt l

t

# # #f !=u " ", ,
1 2 3444 444

2) the production set Y Rj
t lt1  will be identified with the set 

 
: ,

times

Y Y

l l

0 0

–

Rj
t

j
t l

t

# # #f !=u " ", ,
1 2 3444 444

3) the correspondence p Rj
t t lt1η ^ h  will be identified with the set

 
: .

times

p p

l l

0 0

–

Rj
t

j
t t l

t

# # #f !η η=u u^ ^h h " ", ,
1 2 3444 444

In such a setting, it is immediately clear from the definition of the canonical 
scalar product of vectors that the value of the profit function does not depend 
on whether we consider the original elements pt and y jt) or the corresponding 
elements from the embeddings.
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By assumption (g) in the Debreu model with the constant returns to scale (see 
part 2), production sets Y jt  are cones, and therefore special cases of polytopes with 
one vertex and two faces. 

Theorem 1.  Assume that lim Y Yt j j1
1="

t  in the Kuratowski sense. Then:
1) Y j1 is a cone,
2) there exists a subsequence of the sequence of vertices of sets Y jt, i.e. the 

sequence of vectors v jt^ h, which is convergent to the vertex v j1 of set  Y j1.
Proof. As mentioned above, cones are special cases of polytopes with one 

vertex. There is therefore, obviously, #Y 1j
t = , so the second condition from the 

theorem 3 is satisfied. This theorem immediately provides the second part the 
statement 2 in theorem 1. Because #Y 1j

t =  and the set is a polytope, it is clear that it 
is also a cone, which completes the proof of the statement 1 in theorem 1.            ú

The first theorem shows that the Kuratowski limit of the sequence of 
production sets is a good candidate for the production system in the final state. 
The optimal plans are then indeed convergent to the optimal plan in the final 
system. This theorem characterises very well the convergence for both cumulative 
and innovative extensions of the production system.

Theorem 2. The sequence of sets pj
t t

t
ηa ^ hk  is convergent to pj

1 1η ^ h in the 
Kuratowski sense.

Proof. The theorem is the consequence of theorem 4. If necessary, the 
economic system is considered in the space Rl with : supl l,t

t
0 1= ! 6 @ , as described 

above.                                                                                                                       ú
In the second theorem, the convergence of maximisers is shown also in the 

case of price evolution. Recall that this was present in the considerations on 
circular flow and cumulative extensions of the production systems.

5. Mathematical Appendix: Kuratowski Convergence

In this part of the paper we are going to recall briefly the definition of the 
Kuratowski limit of a sequence of sets. Due to the fact that our economic model in 
is set in n-dimensional real space Rn, the definition and basic facts are formulated 
in the simplified version of this vector space. Those results are known and the 
reader may find more details in (Dal Maso 1993).

The Kuratowski convergence is a generalisation of the convergence in the 
Hausdorff metric to the convergence of closed sets.

Hausdorff sought to extend his metric (defined for nonempty compact subsets 
of a metric space) to closed sets. In the beginning of the 20th century, P. Painlevé 
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introduced the concept of upper and lower limits of a sequence of closed subsets 
in a metric space. The resulting convergence was later studied by several 
mathematicians (L. Zoretti, C. Zarankiewicz) but it was K. Kuratowski who first 
prepared a thorough exposition of this theory in his monumental book Topologie 
(Kuratowski 1961). It soon became apparent that this natural convergence of closed 
sets is a most useful tool for optimisation. In particular, the famous De Giorgi’s 
Γ-convergence of extended-valued functionals on a topological space is precisely 
the Kuratowski convergence of their epigraphs. It is a powerful variational 
convergence in that both the minima and minimisers converge to the minimum 
(respectively, the minimiser) of the limiting functional.

Recall the basic definitions and facts. Let E R Rk n#1  be a nonempty set and 
: ,t xR Rk n# "p ^ h ↦ t Rk!  the natural projection. Fix an accumulation point 
t E t0 0=! p ^ h " ,. We write : ,E x t x ERt

n! != ^ h" , for the section of E at t.

Definition 3. We define the lower and upper Kuratowski limits of the family 
(net) whenE t tt 0"^ h  when respectively as the sets:

 ,for any neighbourhood of there is a neighbourhood ofliminfx E U x V t
t t t 0

0
+!

"

 , ;such that for allU E t V E tt 0+ + =Q ! p=Y ^ h " ,
 for any neighbourhood of and any neighbourhood oflimsupx E U x V t

t t
t 0

0
+!

"

 there is a point such that .t V E t U Et0+ = + Q! p =Y^ h " ,
Clearly, liminf limsupE Et t t t t t0 01" " . If the converse inclusion also holds, we 

denote the resulting set by lim Et t t0"  and call it the Kuratowski limit of Et when 
t t0" . Therefore, Et^ h converges to some set F as t t0" , iff

 limsup liminfE EF
t t

t t t t
0 0

1 1
" "

.

We also then write that E Ft
K
"  (when t t0" ).

It is easy to see that the upper and lower limits are closed sets that remain 
unchanged, if we replace the sets Et by their closures.

Observe that a sequence of sets E Rv
n1 may be treated as the t-sections of 

the set :E v E1
R Rv v

n
1 # #, 1= 3
=
+ % / . Then the convergence of the sequence 

Ev^ h when v" 3+  is simply the convergence of the sections Et^ h when t 0" . 
Clearly, liminf Ev v" 3+   consists in this case of all the possible limits of convergent 
sequences chosen point by point: x Ev v! , while limsup Ev v" 3+   is the set of all the 
limits of convergent subsequences x Ev vk k! .
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The most important feature of this convergence is that in the setting introduced 
above it is metrisable and compact (C. Zarankiewicz).

6. Mathematical Appendix: Convergence of Optima in a Linear 
Programming Problem

In linear programming, the vertices of a given linear polytope play an 
important role. As a matter of fact, if a linear functional attains its extremum on 
a linear polytope, then it attains it on the boundary and in particular in a vertex 
(provided, of course, that the set of extremal points E*, i.e. vertices, is nonempty). 
Geometrically, this is captured by the position of the gradient of the functional 
with respect to the normal cones computed at the vertices.

One natural question is what happens when we allow some evolution in time 
(either of the constraints, i.e. of the polytope, or of the functional). Theorem 3 
below gives a sufficient condition for the limit set of a Kuratowski-convergent 
sequence of linear polytopes to be a linear polytope. Moreover, we prove that 
the normal cones at the vertices converge to normal cones. In the non-compact 
case, the assumption of a uniform bound on the number of extremal points is not 
sufficient to obtain a polytope as a limit (see our paper Denkowska, Denkowski & 
Kornafel 2017).

Theorem 3. Assume that lim E Ev v =" 3+ , where E Rv
n1  are linear polytopes. 

Let f Ek v^ h denote the number of k-dimensional faces of the polytope Ev (here 
, , dimk E0 vf! " ,, where the dimension is the dimension of the affine envelope).

If there is a constant M > 0 such that either f E Mdim E v1–v #^ h  for all v, or E is 
compact and #E M*

v # , then:
1) E is a linear polytope, too,
2) #orf E M E M*

dim E 1– # #^ h , respectively,
3) for any a E*!  there is a sequence a E*

v v!  converging to such that the normal 
cones N Ea vv ^ h converge to N Ea ^ h in the sense of Kuratowski.

Thanks to the geometric characterisation of minimisers using normal cones, 
we obtain Theorem 4 concerning the convergence of minimisers.

Theorem 4. Assume that the vectors c Rv
n!  converge to c and let Mv denote the 

set of minimisers of inf x c x E E ,v v
T

A b= =^ h . The sequence Mv^ h converges then 
in the sense of Kuratowski to the set M E1  being the set of minimisers for the 
limiting functional xf x cT=^ h .
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7. Conclusions

This paper presented the theorems which complete the formal description of 
Schumpeterian evolution of the Debreu model. We showed that if only the price 
system evolves to some final state and the innovations (determining the production 
sets Y j) are such that the sequence Y j^ h is convergent in the Kuratowski sense to 
some set Yu, then the producers in the final production system are not only better 
off, but they achieve the maximal possible profit. It is also possible to approach the 
plan providing this maximal profit by a sequence of optimal production plans in 
the process of evolution. The character of Kuratowski convergence has additional 
practical implications: a numerical scheme (simplex method) applied to this 
problem will provide the result as optimum or close to optimum (due to possible 
numerical errors).
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Optima producentów w ewolucji Schumpetera 
(Streszczenie)

W artykule rozważany jest system produkcji w modelu równowagi ogólnej Debreu. 
Zgodnie z teorią J. Schumpetera w celu wybicia gospodarki ze stagnacji konieczne jest 
wprowadzenie innowacji. W ich wyniku otrzymuje się ciągi planów optymalnych, odpo-
wiadających każdemu etapowi wprowadzania innowacji. W pracy scharakteryzowano 
proces zmiany optymalnych planów produkcji i opisano warunki, przy których zagwa-
rantowana jest ich zbieżność w taki sposób, że stan graniczny realizuje optimum stanu 
finalnego.

Słowa kluczowe: model Debreu, system produkcji, ewolucja Schumpetera, innowacje, 
zbieżność Kuratowskiego.


