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1. WSTEP

Modelowanie powiazan 1 zalezno$ci pomigdzy aktywami finansowymi,
z jednoczesnym uwzglednieniem charakterystycznych cech warunkowych rozktadow
brzegowych tych aktywoéw oraz formalnym poroéwnaniem proponowanych struktur
zaleznosci ma istotne znaczenie nie tylko teoretyczne, ale takze praktyczne.
Prognozowanie zmienno$ci oraz dynamiki zalezno$ci pomigdzy procesami jest jednym
z podstawowych zagadnien stochastycznego podejscia do wyceny instrumentow
pochodnych, optymalizacji portfeli inwestycyjnych, kalkulacji warto$ci zagrozonej (ang.
Value at Risk).

Podstawowym narzgdziem ekonometrii finansowej, zaro6wno w analizach
jednowymiarowych, jak i wielowymiarowych, jest proces GARCH (ang. Generalised
Autoregressive Conditionally Heteroscedastic) zaproponowany przez Borelsleva
w 1986 roku jako uogolnienie procesu ARCH (ang. Autoregressive Conditionally
Heteroscedastic). W wyniku poszukiwan modeli lepiej opisujacych dane finansowe
powstaly réznego typu uogolnienia i modyfikacje podstawowego procesu GARCH, s3 to
m.in. EGARCH, TGARCH, GJR-GARCH, IGARCH, FIGARCH, BEKK, DCC, a takze
Copula-GARCH [Fiszeder 2009]. Proces Copula-GARCH zaproponowat Patton [2006b]
oraz Jondeau i Rockinger [2006]. Specyfikacja tego procesu pozwala na ujgcie asymetrii
w rozkladach warunkowych oraz asymetrii w strukturze zalezno$ci poprzez dobor
odpowiedniej kopuli.

W niniejszym artykule przedmiotem rozwazan bedg dwuwymiarowe bayesowskie
modele Copula-AR(1)-GARCH(1,1) z warunkowymi rozktadami brzegowymi:
t-Studenta i sko$nymi t-Studenta. W modelu Copula-GARCH wielowymiarowy rozktad
wektora losowego definiowany jest z wykorzystaniem warunkowych kopul, ktore,
w konsekwencji twierdzenia Skalara, moga zosta¢ uznane za funkcje okreslajace

strukture zaleznos$ci pomigdzy sktadowymi tego wektora. Z kolei warunkowe warto$ci
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oczekiwane 1 wariancje rozktadéw brzegowych w modelu opisywane s3, odpowiednio,
strukturg autoregresyjna i GARCH(1,1).

Glownym celem badan jest porownanie mocy wyjasniajacej modeli Copula-
GARCH ze skosnym i1 symetrycznym rozktadem t-Studenta na przyktadzie danych
finansowych. Do estymacji i porownania modeli zastosowano podejscie bayesowskie,
ktore jest podejsciem formalnym 1 calosciowym. Weryfikacj¢ koniecznosci
uwzgledniania skos$no$ci rozktadéw jednowymiarowych w przedmiotowym modelu
przeprowadzono dla logarytmicznych stop zwrotu notowan dwoch subindekséw indeksu
WIG: WIG-Budownictwo, WIG-Informatyka. Charakterystyki probkowe tych danych
wskazuja na wystgpowanie asymetrii rozktadow brzegowych. Opracowano réwniez
metody Monte Carlo z funkcjg waznosci w konteks$cie stosowanych modeli.

Pierwsza praca z zakresu bayesowskiego porownania modeli jest praca Huard,
Evin i Favre [2006], w ktorej przedstawiono wyniki bayesowskiego pordéwnania
wybranych 9 kopul proponujac rozklad a priori bezposrednio dla wspoétczynnika tau
Kendalla. Nastepnie Silva i Lopes [2008] zastosowali podej$cie bayesowskie do
szacowania parametrow 6 wybranych kopuli, porownanie modeli opierato si¢ na
kryteriach informacyjnych m.in.: DIC, AIC, BIC. Publikacja Rossi, Ehlers, Filho [2012]
prezentuje wyniki poroéwnania 5 modeli Copula-GARCH z warunkowym brzegowym
symetrycznym i sko$nym rozkladem t-Studenta dla danych symulowanych, poréwnanie
modeli opierato si¢ na kryteriach informacyjnych m.in.: DIC, EAIC, EBIC. Praca
Mokrzyckiej i Pajor [2016] przedstawia bayesowskie poréwnanie 11 modeli Copula-
AR(1)-GARCH(1,1) z warunkowym brzegowym rozktadem symetrycznym t-Studenta
dla subindeksu indeksu WIG. W niniejszej pracy przedstawione zostang wyniki
bayesowskiego (opartego na prawdopodobienstwach a posteriori modeli) poréwnania
modeli Copula-GARCH o réznych strukturach zalezno$ci oraz dwoéch typach
warunkowych rozktadow brzegowych z wykorzystaniem danych rzeczywistych.

Artykut zostat podzielony na kilka czgséci, w nastepnej przedstawiono bayesowski
model Copula-AR(1)-GARCH(1,1). W kolejnej czesci omodwiono estymacje
1 porownanie modeli bayesowskich wraz z technikg bayesowskiego taczenia wiedzy.
W czgéci czwartej krotko przedstawiono sposdb estymacji parametrow modelu
z wykorzystaniem metody Monte Carlo z funkcja waznosci. W czesci piatej
zaprezentowano wyniki empiryczne dla wskazanych powyzej stop zwrotu z okresu od
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oraz opracowanych w tym programie autorskich procedur. Artykul konczy

podsumowanie.

2. BAYESOWSKI MODEL COPULA-AR(1)-GARCH(1,1)

Niech zbiorY X Yy € R (T+s)X1 jest zbiorem mozliwych realizacji badanego zjawiska.
Wektor (y, yf)eR(T+S)X” oznacza pojedyncza realizacje tego zjawiska, przy czym
ye T*™ jest wektorem zaobserwowanych wartoSci, natomiast yreRS*™ wektorem
warto$ci prognozowanych. Badane zjawisko opisane jest poprzez model statystyczny
(Y XY, F, P), gdzie F jest c-algebrg podzbioréw zbioru Y X ¥y RT+$)XN (5 algebra
zbiorow  borelowskich); P = {Py: 0 € ®} parametryczng rodzing rozktadow
prawdopodobienstwa okreslonych na F o funkcjach gestosci p(- [6):Y x Y, — R* U {0}
okres$lonych na zbiorze mozliwych realizacji badanego zjawiska. Nast¢pnie niech p(8)
bedzie funkcjg gestosci rozktadu wektora parametréw, czyli tzw. rozktadem a priori.
Bayesowski model statystyczny jest jednoznacznie okre§lony przez gesto$¢ tacznego
rozktadu prawdopodobienstwa wektora zmiennych obserwowalnych, wektora wielko$ci

prognozowanych oraz wektora parametrow [Osiewalski 2001]:

p(3,95.0) = (v, y¢|0)p(8) = (¥s |y, 0)p(¥16)p(6).

Przejdzmy do specyfikacji procesu Copula-AR(1)-GARCH(1,1). Proces
stochastyczny  {y:= (V11,12,),t=0,1,2, ..., T}, jest procesem Copula-AR(1)-
GARCH(1,1) z warunkowymi rozktadami t-Studenta, jezeli spelnia nastgpujace

rownania:
YVie =@iot@irVie Y Ziys (1)
Zi, =&y hi,t > (2)
_ 2
h, =a,cta, z;,  + B s (3)

gdziei=1,2,t=1,2,., T, o >0, a1 =0, Bi1 = 0, {gi,t}tT:l ~iit(0,,v,), czyli
{e,,,t= 1, 2,.,T} jest ciggiem niezaleznych zmiennych losowych o rozkladzie

t-Studenta z zerowa modalng, jednostkowa precyzja 1 v, stopniami swobody

(E (gft) =V, /[(v; =2), v, >2). Natomiast taczny rozklad wektora (&1, &,)', zadany jest



poprzez kopulg o gestosci c(ui, uz) [Patton 2006b, Jondeau i Rockinger 2006, Doman
2011, Mokrzycka i Pajor 2016].
W modelu Copula-AR(1)-GARCH(1,1) z warunkowymi sko$nymi rozktadami

t-Studenta {gi’t}thl ~1iSH0,1,v;,y;), gdzie S#0,l,v,,y;) oznacza skosny rozktad
t-Studenta z zerowa modalna, jednostkowa precyzja, v, stopniami swobody oraz
parametrze asymetrii y;.

Kopula to funkcja okre§lona na kostce [0, 1]" o warto$ciach w przedziale [0, 1],
bedaca obcieciem dystrybuanty n-wymiarowego rozkladu prawdopodobienstwa
o jednostajnych rozktadach brzegowych na przedziale [0, 1] do kostki jednostkowe;j
[Jaworski 2012, Durante i Sempi 2016, Doman 2011]. Podstawg do stosowania kopul
w statystyce, a takze w badaniach ekonometrycznych jest twierdzenie Sklara, ktory
wykazal, ze dla kazdej n-wymiarowej dystrybuanty H istnieje taka kopula C, ze zachodzi
nastepujaca rownos¢ H(xi, ...,x,)=C(F1(x1), ..., Fn(xs)), gdzie F1, ..., F sg dystrybuantami
brzegowymi. Ponadto, jesli dystrybuanty brzegowe sa ciagte, to kopula C wyznaczona
jest jednoznacznie. Twierdzenie odwrotne do twierdzenia Sklara réwniez jest prawdziwe,
tzn. jezeli C jest m-wymiarowa kopula, a Fi,...,F, sa jednowymiarowymi
dystrybuantami, to funkcja H(xi,...,.x,)=C(Fi(x1),...,Fau(xs)) jest n-wymiarowg
dystrybuanta, a F1, ..., F;, jej dystrybuantami brzegowymi [Nelsen 1999, Jaworski 2012].
Z kolei rozszerzenie tego twierdzenia na rozklady warunkowe, z warunkowa kopula,
zostato przedstawione przez Pattona w 2006 r. Stosowanie twierdzenia z rozktadami
warunkowymi jest mozliwe w przypadku, gdy zbior informacji wzgledem, ktérego
odbywa si¢ warunkowanie jest taki sam dla warunkowej kopuli oraz warunkowych
rozktadéw brzegowych [Patton 2006b].

Warunkowa gestos¢ wektora & = (&14,&¢) W modelu Copula-AR(1)-

GARCH(1,1) z warunkowymi rozktadami t-Studenta ma postac:
Pe(ELt; 52,t| '//t_l) =
C(tV1 (Sl.t| V/t—1)' ty, (82.t| V/t—1)| Wt—l)fSt(gl.t; 0,1, V1| V/t—1) X=
X fst(€2,6: 0,1, valy,_,) (4)
gdzie ¢, (-) oznacza dystrybuant¢ jednowymiarowego rozktadu t-Studenta o zerowej
modalnej, jednostkowej precyzji 1 v stopniach swobody, zas f,(-;0,1,v) jest gestoSciag

tego rozktadu. Natomiast w przypadku zastosowania rozktadu sko$nego t-Studenta dla

£1¢ 1 &5 gestos¢ rozkladu prawdopodobienstwa wektora &, ma postac:



De (51,t; 82,t| V/t_l)

= C(tvmq (Sl.t| Wt—l)' Ly, (SZ.tl Wt—l)' V/t—1)f5t.1/1 (El,t; 0,1, vy, Vll l//t—l)

X fsty, (Sz,t; 0,1, vy, V2| V/t_l) (5)
gdzie t,, (-) oznacza dystrybuant¢ jednowymiarowego rozkladu skos$nego t-Studenta
o zerowe] modalnej, jednostkowej precyzji, v stopniach swobody (v>2) i parametrze
asymetrii >0, za$ fs¢,,(5; 0,1, v, ¥) jest gestoscig tego rozktadu i ma nastgpujgca postac
[Osiewalski 2001, Pipien 2006]:

f:St,y(xl VU, h, 7)
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Z kolei faczny warunkowy rozktad wektora (yi., y2.)' przy pie = @io + ¢,y

VA1 4 (V)7 (= 12 (2 ooy (x — 1)

je—p i =12

jest nastepujacy:

Py(th: )’2,t| ‘//t_l) = Pe(()’1,t — Ui )/ e 0o — 2 )/ hz,tl '//t_l)/\/ hythay - (6)

Wobec powyzszego oznaczajac przez 6 = (0;',6.")' € ®©= @; X O, ¢ R™ wektor
nieznanych parametréw modelu Copula-AR(1)-GARCH(1,1), gestos¢ tacznego rozktadu

macierzy obserwacji ma postac:

p(y16s,6.) = HiT=1 Py(th; yZ,t| V/t_l)a (7)
przy czym 6; oznacza wektor parametrow struktury AR(1)-GARCH(1,1), 6, wektor
parametrow kopuli.

W bayesowskim modelu Copula-AR(1)-GARCH(1,1), w ktérym nieznane
parametry traktowane sg jako zmienne losowe, gestos¢ lacznego rozktadu macierzy
obserwacji i parametrow ma postac:

p(y,66,6.) = p(y16¢, 0.)p (06, 6.),
gdzie p(0) = p(6;, 6,) jest gestoscig rozktadu a priori wektora 6, p(y|6;, 6.) jest tzw.
gesto$cig probkowa macierzy obserwacji, ktora w przypadku analizowanego modelu
W swojej postaci zawiera gesto$¢ okreslonej warunkowej kopuli oraz gestosci
warunkowych rozktadow brzegowych (por. rownanie 7).

W dalszej czesci pracy przyjeto, ze gestos¢ rozktadu a priori nieznanych
parametréw modelu Copula-AR(1)-GARCH(1,1) dla parametrow AR(1)-GARCH(1,1)

z warunkowym rozktadem t-Studenta, czyli:



0 = (91,0911 %10, @1,1, P11 V1, 92,0 P21 X2,0, X2,1, B2,1» V) ma  nastgpujaca
strukture  p(66) = P(P1,092,0)P (91,1 921 ) [Ti=1 P(@i0)P (i1, Bi) P, gdzie
P(‘Pl,o' (Pz,o) = fn2 (‘Pl,o' (P2,0|(0'0)" I)i P((Pm; P21 ) = % [_1,1)2 (§01,1; P21 ); oraz

dlai=1,2 p(@ip) = ferp(@i0|da)ide = 1 P(@i1, Bi1) =% Ip(@;1,Bi1), B =1[0,1]1*n

::V) Iiy,o) (V)5 1y = 2; 0, =8 E(v;) = 10.

X

((x,y)ix+y <1 p(w) = S-exp (-
Gestos$¢ rozktadu a priori przyjeto zgodnie z badaniami prowadzonymi przez Pajor
[2003] oraz Pipienia [2006]. Podobnie gestos¢ rozktadu a priori nieznanych parametréw
struktury AR(1)-GARCH(1,1) z warunkowym rozktadem skos$nym t-Studenta, czyli
wektora parametrow:

0¢ = (01,0 P11 X1,0 %1,1, P11, V1 Vi 92,00 92,1, 2,0, X2,1, B21 Y2 Vz)a ma postac:
P(06) = p(P1,0, 92,0)0(@1,1, 02,1 ) [Ti=1 P(@i0)P(@i1, Bin) PP (W), gdzie
dodatkowo gestos¢ rozktadu a priori parametrow asymetrii y; 1 y, to gestos¢ rozkladu
log-normalnego o parametrach 4 = 0, o = 1 [Pipien 2006]. Natomiast gesto$¢ rozktadu
a priori dla parametrow kopuli zostaty tak dobrane, by rozktad a priori dla wspodtczynnika
tau Kendalla byt do$¢ rozproszony [Mokrzycka 1 Pajor 2016]. Zestawienie tych

rozktadow przedstawia Tabela nr 1.



Tabela 1. Zestawienie kopul stosowanych do specyfikacji modelu Copula-AR(1)-GARCH(1,1) wraz ze wskazaniem przyjetych rozktadéw a priori oraz podstawowymi charakterystykami

dotyczacymi zaleznosci

Kopula Param. rozklad tau Kendalla ZaleznoS$ci w ogonach
P kopuli a priori
7, =1-2(1-D,(0)). gdzie =0, A=0
Franka 0 R\{0} 6 ~ N(0,100) o .
D, (x) = ijfid, funkcja Debye’a
x" e —1
cl >0 0~ Exp(l) -9 -
aytona > xXp =92 y =0, Ab=2°
1 1
Gumbela 0>1 9~ Exp(1,1)1(1’+w) 2'6:1—5 Z«U =2_2,9’ /1L —O
Claytona-Gumbela 6>0 0~ Exp(1), .2 ., 1 L L
(BBI) 5>1 §~Exp(LDI, .., | " (@+0s A =2-29, Ar=2%
2 4%y +1) ( 2
- B —,7+1 #2
Joego-Claytona k=1 K~ Exp(l,l)l(l,m) . y(xk-2) xy(x-2) \x 4 x v 1 . 1
0 Ky - _Dk — /4
(BB7) r> y ~ Exp(l) 1+ L +2)—p) K=2 A=2-2x,  A=2
yor
Symetryzowana K=>1 K ~ Exp(L)1 (1,40) . v — ; 1
Joego-Claytona 7>0 y ~ Exp(1) A =27, A =2-2%
1
obrocona Claytona 6>0 0 ~ Exp(1) T, = % Y= 2*5 ’ =0
, 1 I
obrocona Gumbela 0>1 0~ Exp(1,1)1(1,+oo) Ty = 1—5 AV =0 , AL =229
normalna pe(-11D p~U(=L1 = garcsin(p) A= > A=
z
pe(-11), p~U(LD 2 U 1-p L U
t-Studenta R v~ EpQ8)], ., 7=— arcsin( o) A =2t (—v+1 - ) A=A

Zrédlo: opracowano na podstawie J. Mokrzycka, A. Pajor, 2016; ,,N(0,100)” oznacza rozktad normalny o $redniej 0 i odchyleniu standardowym 10; Exp(1) rozktad wyktadniczy z parametrem 1;
Exp(1,1)] 1,00y rozktad wyktadniczy na (1,0) o parametrach u = 1,0 = 1.




3. ESTYMACJA I POROWNANIE MODELI BAYESOWSKICH

Podstawa wnioskowania w modelach bayesowskich sa zasady rachunku
prawdopodobienstwa oraz twierdzenie Bayesa. Estymacja parametrow modelu
statystycznego polega na wyznaczeniu - z ggstosci p(y, 8¢, 0.) = p(y|6s,0.)p(6¢,6.) —
rozktadu warunkowego wektora zmiennych losowych 6 = (64,6,.) przy ustalonym
wektorze obserwacji y, czyli tzw. rozkladu a posteriori:

_r»0) __ pGI9p6)

POY [ pO1OIP(©)E

p(61y)

gdzie p(y) = [ o P(¥[0)p(8)do jest brzegowa gestoscia wektora obserwacji. W modelu

bayesowskim rozktad a posteriori taczy wstepng wiedzg badacza dotyczacg parametrow
0 = (08¢, 0.) z informacja jaka niosg dane empiryczne, okreslang przez gestos¢ p(y|0)
[Pajor 2003].

Poréwnanie konkurencyjnych modeli bayesowskich wymaga obliczenia, na
podstawie wzoru Bayesa, prawdopodobienstwa a posteriori tych modeli [Osiewalski
2001]. Niech M={My, ..., M,,} bedzie kompletnym zbiorem wzajemnie roztgcznych
modeli bayesowskich: M;: pl-(y, H(i)) = pi(y|9(l-))pi(0(i)),i =1,..,m, gdzie 6;) € O
jest wektorem parametrow modelu M;. Prawdopodobienstwo a posteriori modelu,

wyznaczone na podstawie wzoru Bayesa, jest postaci:

p(M)p(y|M;)
T p(M)p(yIM;)’

gdzie p(M;) to prawdopodobienstwo a priori modelu M;, p(y|M;) to brzegowa gestosé

macierzy obserwacji w modelu M;: p(y|M;) =p;(y) = f@pi(y|9(i)) pi(e(i))dé?(i).
Model z najwyzszym prawdopodobienstwem a posteriori uznawany jest za model
najlepiej wyjasniajacy dane empiryczne. Z kolei dobdér prawdopodobienstw a priori
modeli p(M;), sprowadza si¢ najczesciej do przyjecia, ze sg one jednakowe lub nadania
wyzszych prawdopodobienstw modelom o mniejszej liczbie parametrow, zgodnie z tzw.
zasada brzytwy Ockhama [Osiewalski 2001].

Jezeli gtownym celem badawczym jest wnioskowanie o parametrach wspolnych
dla wszystkich modeli (np. wnioskowanie o wspotczynniku tau-Kendalla), mozliwe jest
pomini¢cie wyboru najbardziej prawdopodobnego modelu 1 zastosowanie techniki
bayesowskiego taczenia wiedzy (ang. Bayesian pooling approach). Metoda sprowadza

si¢ do obliczenia $redniej wazonej poszczegdlnych gestosci a posteriori wspdlnych



parametrow z wagami réwnymi prawdopodobienstwom a posteriori modeli [Osiewalski,
2001]. Gestos¢ a posteriori dla wektora wspdlnych parametréw A ma wowcezas postac:
p(Ay) = X p(M;|y)pi(A|y), gdzie p(M;|y) jest prawdopodobienstwem a posteriori
obliczonym zgodnie ze wzorem (8), p;(A|y) jest gestoscig brzegowego rozkladu
a posteriori wektora A w modelu M;. Zastosowanie bayesowkiego taczenia wiedzy
pozwala na uwzglednienie zardbwno niepewnosci co do warto$ci nieznanego parametru
oraz, poprzez usrednienie wiedzy o wspdlnych parametrach, niepewnosci co do

prawidtowej specyfikacji modelu w skonczonej klasie modeli [Osiewalski 2001].

4. LOSOWANIE Z FUNCKJA WAZNOSCI

Wyznaczenie charakterystyk rozktadu a posteriori w modelu bayesowskim w jawnej
postaci nie zawsze jest mozliwe z uwagi na skomplikowana posta¢ gestosci rozktadu
a posteriori tego rozktadu. Wobec tego do wyznaczenia tych charakterystyk stosuje si¢
numeryczne metody calkowania, najbardziej rozpowszechnionymi w literaturze
przedmiotu w konteks$cie wnioskowania bayesowskiego sa metody Monte Carlo
[Osiewalski 2001, Pajor 2003, Pipien 2006]. W przedmiotowej pracy z uwagi na nieduza
liczbe parametrow zastosowano metode Monte Carlo z funkcjg waznosci (ang. Monte
Carlo Importance Sampling). Metoda ta byta jedng z pierwszych metod stosowanych

w ekonometrii bayesowskiej [Kloek i van Dijk 1978].

p(»16)p(0)

Poniewaz p(0|y) = —————,
P Jo p(¥10)D(6)d0

wiec gestos¢ rozktadu a posteriori wektora

parametrow modelu, 6, jest proporcjonalna do iloczynu f(6) = p(y|6)p(6).
Wyznaczenie charakterystyk rozktadu a posteriori wektora parametréw 6 sprowadza si¢
do obliczenia warto$ci oczekiwanych, wzgledem rozktadu a posteriori, pewnych funkcji
wektora @ [Osiewalski 2001, Pipien 2006]. Niech g oznacza t¢ funkcje, a s bedzie

gestoscig pewnego rozktadu wowczas:

6)f(8)do
1=E@@M0=fgwmwwmezkfzg;;

J, s K aso) 9
T T ® )
f, L as@)

gdzie dS(60) oznacza catkowanie wzglgdem absolutnie cigglej miary probabilistycznej S

okreslonej na c-algebrze zbioru @, o dodatniej funkcji gestosci s [Pipien 2006]. Wobec



powyzszego obliczenie szukanej warto$ci oczekiwanej I sprowadza si¢ do obliczenia
ilorazu dwoch warto$ci oczekiwanych wzgledem znanej miary S, ktore to z kolei mozemy
estymowac za pomocg $rednich z proby. Estymator Monte Carlo wielkosci / ma postaé

[Osiewalski 2001, Pipien 2006]:

1, 9(69)f(6%) - '
i\_ﬁZi:l s(@®) X g9(6V)w(69D) (10)
e IO SR
n “i=15(9®)

gdzie w(0) = % oznacza tzw. funkcje wagowa.

Jezeli funkcja f jest proporcjonalna do gestosci  wlasciwego rozkladu
prawdopodobienstwa oraz 8, ...,0™ € @ s3 losowane niezaleznie z rozktadu
0 gestosci s oraz warto$¢ oczekiwana E(gly) istnieje i jest skonczona, to zachodzi

zbiezno$é prawie wszedzie: I, » E(g|y),n — oo (estymator jest zgodny). Ponadto przy

spetnieniu pewnych warunkéw podanych m.in. w pracy Geweke [1989] estymator ten
jest asymptotycznie normalny.
Stosowanie metod Monte Carlo zwigzane jest z obecnoscig biedow

numerycznych. Standardowy btad numeryczny metody Monte Carlo (NSE ang.

21 9(09)-Tn)2w(8D)>2
PARCIONE

numerical standard error) postaci ¢ = \/ powinien osiggac

warto$ci zerowe. Estymator wspotczynnika RNE (ang. relative numerical efficiency,

1 [2L,g°(0D)w(e®) ~2

ng,’ i=1w(0®) "

wzglednej efektywno$ci numerycznej) postaci RNE =

powinien przyjmowac wartosci bliskie jedynce, co zachodzi wowczas, gdy losowanie
wedhug funkcji wazno$ci prawie nie rézni si¢ od losowania z rozktadu a posteriori

[Osiewalski 2001]. Z kolei wspotczynnik zmiennosci funkcji wagowe] ¥, =

. 2
\]Zn w26 ( n W(Q(L))>
=1 p =1 g

EINIRUCIO)

okresla stosunek empirycznego odchylenia standardowego

warto$ci wag do $redniej wagi. Nieograniczony wzrost tego wspotczynnika wraz ze
wzrostem liczby losowan, obserwowany w postaci naglych skokéw jego wartosci,
wskazuje na to, ze dobrana funkcja waznosci jest nieodpowiednia [Osiewalski 2001].

W zastosowaniach metody Monte Carlo dobor funkcji waznos$ci jest bardzo
wazny - im funkcja waznosci lepiej przybliza jadro gestosci rozkltadu a posteriori tym

uzyskiwane realizacje ,,nieznacznie” r6znig si¢ od realizacji z rzeczywistego rozktadu
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a posteriori, co skutkuje dobrymi aproksymacjami numerycznymi. W przedmiotowe;j
pracy za funkcje waznoS$ci przyjeto wielowymiarowy rozktad t-Studenta z 3 stopniami
swobody zgodnie z pracami Osiewalskiego [2001] 1 Pipienia [2006]. Parametry tego
rozktadu (wektor $rednich 1 macierz kowariancji) zostaly oszacowane iteracyjnie na
podstawie wstepnych 100 000 lub 1 mln przebiegow algorytmu.

Stosowanie metody Monte Carlo z funkcjg waznos$ci znacznie upraszcza sposob
szacowania wartosci brzegowej gestosci macierzy obserwacji p(y), gdyz jej estymatorem
jest $rednia arytmetyczna wag: %2?=1w(9(0). Warto zaznaczy¢, ze stosowanie
algorytmu Metropolisa-Hastingsa wymaga zastosowania bardziej czasochtonnych
(obliczeniowo) estymatorow, np. skorygowanej sredniej harmonicznej, estymatora Chiba

i Jeliazkova, estymatora Laplace’a i Metropolisa, czy skorygowanej S$redniej

arytmetycznej [Mokrzycka i Pajor 2016, Pajor 2017].

5. WYNIKI EMPIRYCZNE

Przedmiotem modelowania jest zmienno$¢ 1 struktura zalezno$ci dziennych,
procentowych logarytmicznych stop zwrotu, obliczonych na podstawie ceny zamknigcia
subindeksow indeksu WIG: WIG-Budownictwo 1 WIG Informatyka w okresie od
1 sierpnia 2005 r. do 21 wrze$nia 2015 r. Wybor tego okresu wynika z kontynuacji badan
nad strukturg zaleznosci dla subindeksow indeksu WIG przedstawionych w pracy
Mokrzyckiej 1 Pajor [2016]. Liczba obserwacji (stop zwrotu) szeregu subindeksow
wyniosta 2539. Dane pochodzity z portalu www.stooq.pl. Wykresy oraz charakterystyki

probkowe logarytmicznych procentowych stop zwrotu zawiera tabela nr 2.

Tabela 2. Wykresy oraz charakterystyki probkowe logarytmicznych procentowych stop zwrotu

WIG-Budownictwo

10 I I I I I
500 1000 1500 2000 2500

Srednia: 0,009; odch. stand.: 1,4833; skosnos¢: -0,3697; kurtoza: 6.4209; Min: -8.3796, Max:
8.2028

WIG-Informatyka
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-y -

10 I | I I I
500 1000 1500 2000 2500

Srednia: 0,013; odch. stand.: 1,3495; skoSnos$¢: -0,4282; kurtoza: 5.8886; Min: -8.8167, Max:
6.2388

Zrédto: Opracowanie whasne.

Wykresy analizowanych szeregoéw czasowych obrazuja wystepowanie obserwacji
nietypowych oraz obszarow skupiania si¢ zmienno$ci (ang. volatility clustering), czyli
okresow o duzych co do wartosci bezwzglednej stopach zwrotu, po ktérych nastepuja
okresy o mniejszych wartosciach stop zwrotu. Wartos¢ kurtozy: 5,8886 1 6.4209 wskazuje
na leptokurtyczno$¢ rozktadéw empirycznych (duza koncentracja rozktadu wokot
modalnej oraz wystepowanie grubych ogonow). Wspotczynniki skosnosci wskazuja na
wystepowanie lewostronnej asymetrii rozktadu. Wartosci wspodtczynnika korelacji
liniowej oraz tau-Kendala przedstawia tabela nr 3. Warto$ci te sugeruja dodatnig

zaleznos¢.

Tabela 3. Probkowe wspodtczynniki korelacji liniowych oraz tau-Kendalla

Dane Wspolczynnik Wspolczynnik
korelacji liniowej | tau-Kendalla
(WIGBUD, WIGINF) | 0,5480 0,3384

Zrédto: Opracowanie whasne.

Wyniki zamieszczone w tabelach 4-6 przedstawiaja warto$ci logarytmu naturalnego
brzegowej gestosci a posteriori macierzy obserwacji (In(p(y|M))) oraz wartosci
prawdopodobienstwa a posteriori poszczegdlnych modeli, przy zatozeniu, ze a priori

modele sg jednakowo prawdopodobne.

Tabela 4. Zestawienie prawdopodobienstw a posteriori modeli Copula-AR(1)-GARCH(1,1) z warunkowymi
brzegowymi rozktadami t-Studenta.

(WIGBUD, WIGINF)
Lp. | Kopula In(p(y|M)) | p(M) | p(Mly)
1 | Franka -8145,407 | 0,0909 0
2 | Claytona -8128,834 | 0,0909 0
3 | Gumbela -8149,97 | 0,0909 0
4 | Claytona-Gumbela(BB1) -8083,948 | 0,0909 | 0,71061
5 | Joe-Claytona(BB7) -8086,289 | 0,0909 | 0,06838
6 | Symetryzowana Joe-Claytona | -8085,13 | 0,0909 | 0,2178
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7 | obrocona Claytona -8128,838 | 0,0909 0
8 | obrocona Gumbela -8092,694 | 0,0909 | 0,00011
9 | Normalna -8105,155 | 0,0909 0
10 | t-Studenta -8089,383 | 0,0909 | 0,0031
11 | zm. Niezalezne -8452,584 10,0909 0

Zrodlo: opracowanie wlasne.

Tabela 5. Zestawienie prawdopodobienstw a posteriori modeli Copula-AR(1)-GARCH(1,1) z warunkowymi
brzegowymi rozktadami sko$nymi t-Studenta.

(WIGBUD, WIGINF)

Lp. | Kopula In(p(y|M)) | p(M) | p(Mly)
1 | Franka -8148,594 | 0,0909 0
2 | Claytona -8131,529 | 0,0909 0
3 | Gumbela -8157,282 10,0909 0
4 | Claytona-Gumbela(BB1) -8089,403 | 0,0909 | 0,7164
5 | Joe-Claytona(BB7) -8091,892 | 0,0909 | 0,0595
6 | Symetryzowana Joe-Claytona | -8090,584 | 0,0909 | 0,2199
7 | obrdécona Claytona -8228,252 10,0909 0
8 | obrécona Gumbela -8094,758 | 0,0909 | 0,0034
9 | normalna -8111,274 10,0909 | 0,0000
10 | t-Studenta -8096,188 | 0,0909 | 0,0008
11 | zm. Niezalezne -8455,067 | 0,0909 0

Zroédto: opracowanie wlasne.

Tabela 6. Zestawienie prawdopodobienstw a posteriori modeli (,,t” ozn. model z warunkowym brzegowym rozktadem
t-Studenta, ,,t-sk” ozn. model z warunkowym brzegowym sko$nym rozktadem t-Studenta).

(WIGBUD, WIGINF)
Lp. | Kopula In(p(yM)) | pM) | p(M1y)
1 t | -8145407 ] 0,0455 0
Franka
2 t-sk | -8148,594 | 0,0455 0
3 Claytona t | -8128,834]0,0455 0
4 t-sk | -8131,529 | 0,0455 0
5 t -8149,97 | 0,0455 0
Gumbela
6 t-sk | -8157,282 | 0,0455 0
7 Claytona-Gumbela@B1) || -8083.9480.0455 ] 07076
8 t-sk | -8089,403 | 0,0455 | 0,0030
9 t | -8086,289 | 0,0455 | 0,0681
Joe-Cl BB7 : : :
1| Joc-Claytona(BB7) t-sk | -8091,892 | 0,0455 | 0,0003

—
J—
—

-8085,13 | 0,0455 | 0,2169
t-sk | -8090,584 | 0,0455 | 0,0009
-8128,838 | 0,0455 0
t-sk | -8228,252 | 0,0455 0
-8092,694 | 0,0455 | 0,0001

Symetryzowana Joe-Claytona

—_—
[\S}

—
w
-

obrocona Claytona

[,
N

—
W
-

obrocona Gumbela

16 t-sk | -8094,758 | 0,0455 | 0,0000

17 t -8105,155| 0,0455 0
normalna

18 t-sk | -8111,274 | 0,0455 0

19 t-Studenta t -8089,383 | 0,0455 | 0,0031

20 t-sk | -8096,188 | 0,0455 0

21 . . t -8452,584 | 0,0455 0
zm. Niezalezne

22 t-sk | -8455,067 | 0,0455 0

Zrodlo: opracowanie wlasne.
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Wartosci brzegowych gestoSci a posteriori macierzy obserwacji zostaly
oszacowane z wykorzystaniem metody Monte Carlo (MC) z funkcja wazno$ci (ggstoscia
wielowymiarowego rozkladu t-Studenta z 3 stopniami swobody) z zachowaniem
odpowiedniej korekty warto$ci z uwagi na restrykcje narzucone na warto$ci parametrow
kazdego z modeli [Osiewalski 2001]. Po ustaleniu charakterystyk funkcji waznosci
(wektora $rednich i macierzy precyzji) wykonano 1 min symulacji w ramach kazdego
modelu. W tabeli 4 1 5 zaprezentowano wyniki porownania 11 modeli Copula-AR(1)-
GARCH(1,1) z odpowiednio warunkowym brzegowym rozkltadem t-Studenta
i warunkowym brzegowym sko$nym rozkladem t-Studenta. Dla stop zwrotu
subindeksow WIG-Budownicto 1 WIG-Informatyka najbardziej prawdopodobnym
modelem okazat si¢ model z kopulg Clayona-Gumbela. Model AR(1)-GARCH(1,1)
z kopulg niezalezng zostal zdecydowanie odrzucony przez dane. W tabeli 6
przedstawiono wyniki porownania wszystkich 22 modeli. Najwyzsze wartosci
prawdopodobienstw a posteriori osiaggnety modele z brzegowym warunkowym
symetrycznym  rozktadem t-Studenta 1 kopulg Claytona-Gumbela. Niskie
prawdopodobienstwo a posteriori modeli ze sko$nym rozkladem t-Studenta potwierdza
stwierdzenie zamieszczone w pracy Mokrzyckiej 1 Pajor [2016], Zze ,,na wartosé
wspotczynnika skosnosci majg wplhyw obserwacje znajdujgce sie daleko w lewym ogonie”

[Mokrzycka i Pajor 2016, s. 136].

Tabela 7. Charakterystyki a posteriori oraz NSE i RNE dla warto$ci oczekiwanych parametrow modeli

Copula-AR(1)-GARCH(1,1) Copula-AR(1)-GARCH(1,1)
z brzegowymi rozktadami t-Studenta | z brzegowymi rozktadami sko§nymi t-Studenta
Parametr | j kopulg Claytona-Gumbela (BB1) i kopulg Claytona-Gumbela (BB1)

E(y) | D(]y) [ NSE | RNE | E(ly) | D(ly) | NSE RNE

®10 0,028 | 0,023 | 5,7E-05 | 0,1586 | 0,065 0,041 1,1E-04 0,144
®11 0,072 | 0,018 | 4,5E-05 | 0,1573 | 0,071 0,018 4,7E-05 0,141
@, 0,024 | 0,008 | 3,2E-05 | 0,0662 | 0,024 0,008 3,3E-05 0,067
@, 0,031 | 0,007 | 2,4E-05 | 0,0862 | 0,032 0,007 2,4E-05 0,085
B 0,931 | 0,016 | 5,7E-05 | 0,0760 | 0,929 0,016 6,0E-05 0,073
Vi 5,242 | 0,511 | 0,00149 | 0,1170 | 5,223 0,508 1,5E-03 0,114
P20 0,048 | 0,022 | 5,4E-05 | 0,1574 | 0,109 0,039 1,0E-04 0,148
P21 -0,043 | 0,018 | 4,6E-05 | 0,1564 | -0,045 0,018 4,9E-05 0,136
oz 0,046 | 0,015 | 5,9E-05 | 0,0626 | 0,045 0,014 4,8E-05 0,091
a1 0,040 | 0,009 | 2,7E-05 | 0,1031 | 0,041 0,009 2,7E-05 0,102
B2 0,896 | 0,024 | 9,1E-05 | 0,0692 | 0,895 0,023 7,6E-05 0,095
Vo 5,316 | 0,542 | 0,00157 | 0,1189 | 5,395 0,566 1,9E-03 0,092
0, 0,427 | 0,043 | 0,00011 | 0,1572 | 0,460 0,048 1,3E-04 0,135
0, 1,217 | 0,027 | 6,9E-05 | 0,1537 | 1,203 0,027 7,2E-05 0,141
Y1 - - - --- 0,972 0,023 6,1E-05 0,138
Y2 - - - --- 0,956 0,022 5,8E-05 0,147

Zrédlo: opracowanie whasne. E( |y) — warto$é oczekiwana, D( |y) — odchylenie standardowe
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Rys. 1. Wspodlczynniki zmienno$ci wag w estymacji modelu Copula-AR(1)-GARCH(1,1) z kopulag Claytona-
Gumbela(BB1)

s wspotczynnik zmi sci wag w delu Copula-AR(1)-GARCH(1,1) z brzegowymi r it i kopulg Clay -Gumbela
T T - T I I T T T T

25—

15 | | | | |
0 100 200 300 400 500 600 700 800 900 1000

potczynnik zmi Sci wag w delu Copula-AR(1)-GARCH(1,1) z brzegowymi rozktadami skosnymi t-studenta i kopula Claytona-Gumbela
. 2 2 z - " : : H

25}

155 1 | L 1 L 1 L | 1 ]
0 100 200 300 400 500 600 700 800 900 1000

Zrodto: opracowanie wlasne

W tabeli 7 przedstawiono charakterystyki a posteriori dla wartosci oczekiwanych
parametréw najbardziej prawdopodobnych modeli oraz btedy numeryczne oszacowan
(NSE i RNE). Rysunek nr 1 przedstawia wspodtczynnik zmiennos$ci wag — na osi poziomej
jako jednostke przyjeto 1000 iteracji. Uzyskane i przedstawione btgdy numeryczne
w ocenie autorki sa do zaakceptowania. Btad NSE przyjmuje warto$ci bliskie zeru,
a wspotczynniki zmienno$ci wag y,, nie wykazuja naglych duzych skokéw wartos$ci,
jedynie RNE nie jest bliskie jedynce, co oznacza, ze istnieje mozliwo$¢ dobrania lepszej
funkcji waznosci, ktora efektywniej ,,typowataby” obserwacje z faktycznego rozktadu

a posteriori.

Rys. 2. Histogramy brzegowych rozkladow a  posteriori  parametrow  asymetrii  w  modelu
z kopula Claytona-Gumbela. Linia ciagla ggsto$¢ rozktadu a priori.
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Histog brzeg: g kladu a posteriori parametru skosnosci Histogram brzegowego rozkladu a posteriori parametru skosnosci
w warunkowym rozkladzie WIGBUD % w warunkowym rozktadzie WIGINF
' : : : : .

1 16

ul 14

1 10

1 6

1 4

M““ U
|||| ||I|H|.

dll 5
.mliIi||IIII?IIII||||I|IIIIIiIII|IIIIlIlIIIIIHI[IIIIIIIIIIIIIIIlIIIlIIn... 0 | 1] :]I[Ir
0.8 085 0.9 095 1 105 11 0.8 0.85 0.8 0.95 1 1.05 1.1

Zrodlo: opracowanie wlasne.

Na powyzszych wykresach zaprezentowano histogramy brzegowych rozktadow
a posteriori wraz z rozktadem a priori parametrow asymetrii y; 1 Y, uzyskane w modelu
z kopulg Claytona-Gumbela. Rozktady tych parametrow sa przesuniete nieco w lewo od
1, jedynka znajduje si¢ w obszarze wysokich wartosci funkcji gestosci rozktadu

a posteriori.

Tabela 8. Wartosci oczekiwane i odchylania standardowe (w nawiasach) a posteriori wspotczynnika tau Kendalla
i zaleznosci ogonowych

Copula-AR(1)-GARCH(1,1) Copula-AR(1)-GARCH(1,1)
z brzegowymi rozktadami t-Studenta z brzegowymi rozktadami
sko$nymi t-Studenta
tau tau

Kopula Kendalla A A Kendalla A A
Franka 0,3366 0 0 0,3364 0 0

(0,0119) (0) (0) (0,0119) (0) (0)
Claytona 0,2706 0 0,3927 | 0,2828 0 0,4150

(0,0106) (0) (0,0197) | (0,0116) (0) (0,0209)
obrécona Claytona 0,2706 0,3928 0 0,2505 0,3541 0

(0,0106) | (0,0197) (0) (0,0122) | (0,0238) (0)
Gumbela 0,3125 0,3895 0 0,3149 0,3921 0

(0,0121) | (0,0135) (0) (0,0127) | (0,0142) (0)
obrocona Gumbela 03116 0 0,3884 | 0,3202 0 0,3981

(0,0120) (0) (0,0134) | (0,0123) (0) (0,0136)

0,3200 0,2322 | 0,2622 | 0,3220 0,2199 0,2838
Claytona-GumbelaBBI) | - ';34) | (0,0224) | (0.0309) | (0,0135) | (0,0220) | (0,0325)

0,3148 02844 | 03222 | 0,3157 0,2678 0,3390
Joego-Claytona (BB7) 0,0119) | (0,0262) | (0,0248) | (0,0119) | (0,0275) | (0,0263)
Symetryzowana 0,2402 | 0,3561 0,2212 03712
Joego-Claytona - (0,0291) | (0,0223) - (0,0304) | (0,0236)
Normalna 0,320 0 0 0,3309 0 0

(0,0111) (0) (0) (0,0112) (0) (0)
- Studenta 0,3288 0,1669 | 0,1669 | 0,3283 0,1621 0,1621

(0,0123) | (0,0401) | (0,0401) | (0,0123) | (0,0404) | (0,0404)

Zrodlo: opracowanie wlasne.
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Rys. 3. Histogramy brzegowych rozktadow a posteriori wspolczynnika tau Kendalla w modelu z kopula Claytona-
Gumbela (po lewej dla modelu z brzegowymi rozktadami t-Studenta, po prawej dla modelu z brzegowymi rozktadami
sko$nymi t-Studenta). Linia ciggla gestos¢ rozktadu a priori.

Histogram brzegowego rozkladu a posteriori wspotczynnika tau Kendalla Histogram brzegowego rozkiadu a posteriori wspélczynnika tau Kendalla

w modelu z brzegowymi rozktadami t-studenta w modelu z brzegowymi rozkladami sko$snymi t-studenta
30 T T

il y !
w1 i !
0.2 025 03 035 0.4 0.45 05 0.2 025 0.3 035 0.4

25+ 251

20+ 20+

045 05

Zrodlo: opracowanie wlasne.

Rys. 4. Histogramy brzegowych rozktadow a posteriori zaleznosci ogonowych w modelu z brzegowymi rozktadami

t-Studenta (wiersz pierwszy) i skosnymi t-Studenta (wiersz drugi) oraz kopulg Claytona-Gumbela (po lewej: gérna, po
prawej: dolna). Linia ciggla ggstos¢ rozktadu a priori.

Histogram brzegowego rozkladu a posteriori gornej zaleznosci ogonowej - Histogram brzeg 1] ap jori dolnej zaleznosci ogonowej
b B B . . v ' T T r T T - B . v T T T

L L L L ol .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1 0 0.1 0.2 0.3 0.4

0.5 08 0.7 0.8 0.9 1
[l brzeg go rozkladu a iori gornej zaleznosci ogonowej

Histogram brzegowego rozkladu a posteriori dolnej zaleznosci ogonowej

0.9 1

Zrodlo: opracowanie wlasne.

Charakterystyki rozktadow a posteriori wspotczynnika tau-Kendalla (przedstawione
w tabeli 8) wskazuja na dodatnig zaleznos¢, tj. prawdopodobienstwo realizacji wektora
losowego uporzadkowanego zgodnie jest wyzsze niz prawdopodobienstwo niezgodnego
uporzadkowania tego wektora. Szacowanie zalezno$ci ogonowych dato wartosci

niezerowe, co oznacza niezerowe prawdopodobienstwo réwnoczesnego przyjmowania
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warto$ci ekstremalnych. W modelu z kopula Claytona-Gumbela na histogramach
brzegowego rozkladu a posteriori zalezno$ci ogonowych (zob. rys. 4) widoczne jest
nieznaczne przesuni¢cie rozktadu parametru dolnej zaleznosci ogonowej w stosunku do
rozktadu gérnej zaleznosci ogonowej. Wyzsza warto$¢ oczekiwang a posteriori uzyskano

dla dolnej zaleznos$ci ogonowe;.

Tabela 9. Wyniki bayesowskiego laczenia wiedzy dla parametrow wspolnych modeli

Copula-AR(1)- Copula-AR(1)- Copula-AR(1)-
GARCH(1,1) GARCH(1,1) GARCH(1,1)
z brzegowymi z brzegowymi 22 modele
Parametr rozkia%’laz}i] rozkia%’laz}i] skosnymi ( )
t-Studenta (11 modeli) | t-Studenta (11 modeli)
E(ly) D(ly) E(ly) D(ly) E(ly) D(ly)
P10 0,0284 0,0227 0,0648 0,0408 0,0285 0,0230
P11 0,0720 0,0177 0,0713 0,0177 0,0720 0,0177
a0 0,0233 0,0083 0,0242 0,0085 0,0233 0,0083
a1 0,0310 0,0070 0,0316 0,0070 0,0310 0,0070
Bi1 0,9315 0,0158 0,9299 0,0160 0,9315 0,0157
Vi 5,1495 0,5174 5,1366 0,5132 5,1494 0,5194
P20 0,0486 0,0215 0,1092 0,0388 0,0488 0,0219
P21 -0,0428 0,0181 -0,0451 0,0182 -0,0428 0,0181
a0 0,0455 0,0148 0,0455 0,0144 0,0455 0,0148
a1 0,0400 0,0086 0,0404 0,0086 0,0400 0,0086
B21 0,8956 0,0240 0,8951 0,0235 0,8956 0,0239
Vo 5,2286 0,5457 5,3144 0,5667 5,2289 0,5482
Y1 --- --- 0,9721 0,0228 -—- -—-
Y2 --- --- 0,9557 0,0223 -—- -—-
tau-Kendalla | 0,2500 0,1324 0,2508 0,1337 | 0,2500 0,1324
AL 0,2865 0,0494 0,3066 0,0485 | 0,2866 0,0491
AV 0,2373 0,0280 0,2325 0,0352 0,2373 0,0278

Zrédlo: opracowanie whasne. E( |y) — warto$¢ oczekiwana, D( y) — odchylenie standardowe

W tabeli 9 zamieszczono wyniki bayesowskiego 1aczenia wiedzy dla charakterystyk
rozktadu a posteriori parametrow modelu. Zastosowanie tej techniki wptyngto na
obnizenie warto$ci wspotczynnika tau Kendalla oraz niewielkie zwigkszenie wartosci
dolnej zaleznos$ci ogonowej w stosunku do modelu o najwyzszym prawdopodobienstwie

a posteriori.

6. PODSUMOWANIE

W pracy podjeto probe modelowania zmiennosci 1 zalezno$ci pomiedzy finansowymi
szeregami czasowymi z wykorzystaniem modeli Copula-AR(1)-GARCH(1,1)
z brzegowymi warunkowymi rozkladami t-Studenta 1 sko$nymi t-Studenta oraz
jedenastoma typami kopul. Do tego celu wykorzystano bayesowskie wnioskowanie

statystyczne, ktore jest podejsciem formalnym 1 caloSciowym. Z uwagi na

18



skomplikowane postaci gestosci rozktadow a posteriori charakterystyki tych 22
rozktadow, oszacowano stosujac metode Monte Carlo z funkcjg waznos$ci. Estymacja
modeli zostata wykonana dla logarytmicznych, procentowych stop zwrotu subindeksow:
WIG-Budownictwo 1 WIG-Informatyka. W wyniku formalnego bayesowskiego
porownania 22 modeli wytypowano model Copula-AR(1)-GARCH(1,1) z kopula
Claytona-Gumbela i brzegowym, warunkowym, symetrycznym rozkladem t-Studenta
jako model najlepiej opisujacy stopy zwrotu subindeksow. W obu przypadkach
analizowane modele Copula-GARCH z brzegowym warunkowym rozkladem sko$nym
t-Studenta uzyskaty wartosci prawdopodobienstw a posteriori duzo nizsze od modeli
z symetrycznym rozkladem t- Studenta. Uzyskane wyniki potwierdzity, ze probkowa
ujemna warto$¢ wspolczynnika skosnosci dla zwrotu subindeksow wynika

z wystepowania obserwacji nietypowych w lewym ogonie rozktadu.

Ponadto w pracy zaprezentowano takze wyniki estymacji wspotczynnika tau
Kendalla oraz zaleznosci ogonowych zarowno dla poszczegolnych 22 modeli jak rowniez
estymacj¢ tych wielkosci z zastosowaniem techniki bayesowskiego laczenia wiedzy.
Uzyskane wyniki wskazuja na czgstsze wystgpowanie uporzadkowania zgodnego niz
niezgodnego w analizowanej parze sktadowych wektora losowego (dodatnia wartos¢
wspotczynnika tau Kendalla) oraz wystepowanie asymetrycznej struktury zaleznosci

w ogonach rozktadow (kopula Claytona-Gumbela).

Przedstawiona w pracy estymacja bayesowkich modeli Copula-GARCH oraz ich
poréwnanie byla kontynuacja badan prezentowanych w pracy Mokrzyckiej i Pajor
[2016]. Kolejnym etapem badawczym bedzie opracowanie dynamicznych modeli
Copula-GARCH 1 ich formalne poréwnanie z modelami statycznymi lub MGARCH (ang.
Multivariate GARCH). Nastepnie wykorzystanie tych modeli do szacowania wartos$ci
zagrozonej (ang. Value at Risk), oczekiwanego niedoboru (ang. expected shortfall) oraz

oceny wystepowania efektu zarazania (ang. contagion) na rynkach finansowych.
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