
1 
 

PORÓWNANIE BAYESOWSKICH MODELI COPULA-AR(1)-GARCH(1,1)  

Z ASYMETRYCZNOŚCIĄ ROZKŁADÓW WARUNKOWYCH 

Justyna Mokrzycka1 

1. WSTĘP 

Modelowanie powiazań i zależności pomiędzy aktywami finansowymi,  

z jednoczesnym uwzględnieniem charakterystycznych cech warunkowych rozkładów 

brzegowych tych aktywów oraz formalnym porównaniem proponowanych struktur 

zależności ma istotne znaczenie nie tylko teoretyczne, ale także praktyczne. 

Prognozowanie zmienności oraz dynamiki zależności pomiędzy procesami jest jednym  

z podstawowych zagadnień stochastycznego podejścia do wyceny instrumentów 

pochodnych, optymalizacji portfeli inwestycyjnych, kalkulacji wartości zagrożonej (ang. 

Value at Risk).  

Podstawowym narzędziem ekonometrii finansowej, zarówno w analizach 

jednowymiarowych, jak i wielowymiarowych, jest proces GARCH (ang. Generalised 

Autoregressive Conditionally Heteroscedastic) zaproponowany przez Borelsleva  

w 1986 roku jako uogólnienie procesu ARCH (ang. Autoregressive Conditionally 

Heteroscedastic). W wyniku poszukiwań modeli lepiej opisujących dane finansowe 

powstały różnego typu uogólnienia i modyfikacje podstawowego procesu GARCH, są to 

m.in. EGARCH, TGARCH, GJR-GARCH, IGARCH, FIGARCH, BEKK, DCC, a także 

Copula-GARCH [Fiszeder 2009]. Proces Copula-GARCH zaproponował Patton [2006b] 

oraz Jondeau i Rockinger [2006]. Specyfikacja tego procesu pozwala na ujęcie asymetrii 

w rozkładach warunkowych oraz asymetrii w strukturze zależności poprzez dobór 

odpowiedniej kopuli.  

W niniejszym artykule przedmiotem rozważań będą dwuwymiarowe bayesowskie 

modele Copula-AR(1)-GARCH(1,1) z warunkowymi rozkładami brzegowymi:  

t-Studenta i skośnymi t-Studenta. W modelu Copula-GARCH wielowymiarowy rozkład 

wektora losowego definiowany jest z wykorzystaniem warunkowych kopul, które,  

w konsekwencji twierdzenia Skalara, mogą zostać uznane za funkcje określające 

strukturę zależności pomiędzy składowymi tego wektora. Z kolei warunkowe wartości 
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oczekiwane i wariancje rozkładów brzegowych w modelu opisywane są, odpowiednio, 

strukturą autoregresyjną i GARCH(1,1).  

Głównym celem badań jest porównanie mocy wyjaśniającej modeli Copula-

GARCH ze skośnym i symetrycznym rozkładem t-Studenta na przykładzie danych 

finansowych. Do estymacji i porównania modeli zastosowano podejście bayesowskie, 

które jest podejściem formalnym i całościowym. Weryfikację konieczności 

uwzględniania skośności rozkładów jednowymiarowych w przedmiotowym modelu 

przeprowadzono dla logarytmicznych stóp zwrotu notowań dwóch subindeksów indeksu 

WIG: WIG-Budownictwo, WIG-Informatyka. Charakterystyki próbkowe tych danych 

wskazują na występowanie asymetrii rozkładów brzegowych. Opracowano również 

metody Monte Carlo z funkcją ważności w kontekście stosowanych modeli. 

Pierwszą pracą z zakresu bayesowskiego porównania modeli jest praca Huard, 

Evin i Favre [2006], w której przedstawiono wyniki bayesowskiego porównania 

wybranych 9 kopul proponując rozkład a priori bezpośrednio dla współczynnika tau 

Kendalla. Następnie Silva i Lopes [2008] zastosowali podejście bayesowskie do 

szacowania parametrów 6 wybranych kopuli, porównanie modeli opierało się na 

kryteriach informacyjnych m.in.: DIC, AIC, BIC. Publikacja Rossi, Ehlers, Filho [2012] 

prezentuje wyniki porównania 5 modeli Copula-GARCH z warunkowym brzegowym 

symetrycznym i skośnym rozkładem t-Studenta dla danych symulowanych, porównanie 

modeli opierało się na kryteriach informacyjnych m.in.: DIC, EAIC, EBIC. Praca 

Mokrzyckiej i Pajor [2016] przedstawia bayesowskie porównanie 11 modeli Copula-

AR(1)-GARCH(1,1) z warunkowym brzegowym rozkładem symetrycznym t-Studenta 

dla subindeksu indeksu WIG. W niniejszej pracy przedstawione zostaną wyniki 

bayesowskiego (opartego na prawdopodobieństwach a posteriori modeli) porównania 

modeli Copula-GARCH o różnych strukturach zależności oraz dwóch typach 

warunkowych rozkładów brzegowych z wykorzystaniem danych rzeczywistych. 

Artykuł został podzielony na kilka części, w następnej przedstawiono bayesowski 

model Copula-AR(1)-GARCH(1,1). W kolejnej części omówiono estymację  

i porównanie modeli bayesowskich wraz z techniką bayesowskiego łączenia wiedzy.  

W części czwartej krótko przedstawiono sposób estymacji parametrów modelu  

z wykorzystaniem metody Monte Carlo z funkcją ważności. W części piątej 

zaprezentowano wyniki empiryczne dla wskazanych powyżej stóp zwrotu z okresu od 

1.08.2005 r. do 21.09.2015 r.. Obliczenia wykonano z użyciem programu MATLAB2014 
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oraz opracowanych w tym programie autorskich procedur. Artykuł kończy 

podsumowanie. 

 

2. BAYESOWSKI MODEL COPULA-AR(1)-GARCH(1,1) 

Niech zbiór ܻ × ௙ܻ ⊂ ܴ(்ା௦)×௡ jest zbiorem możliwych realizacji badanego zjawiska. 

Wektor ൫ݕ,  ௙൯ܴ߳(்ା௦)×௡ oznacza pojedynczą realizacje tego zjawiska, przy czymݕ

߳ݕ ்×௡ jest wektorem zaobserwowanych wartości, natomiast ݕ௙ܴ߳௦×௡ wektorem 

wartości prognozowanych. Badane zjawisko opisane jest poprzez model statystyczny 

൫ܻ × ௙ܻ , ,ܨ ܲ൯, gdzie ܨ jest σ-algebrą podzbiorów zbioru ܻ × ௙ܻ ⊂ ܴ(்ା௦)×௡ ( σ-algebrą 

zbiorów borelowskich); ܲ = { ఏܲ: ߠ ∈ } parametryczną rodziną rozkładów 

prawdopodobieństwa określonych na F o funkcjach gęstości ݌(∙ :(ߠ| ܻ × ௙ܻ → ܴା ∪ {0} 

określonych na zbiorze możliwych realizacji badanego zjawiska. Następnie niech (ߠ)݌ 

będzie funkcją gęstości rozkładu wektora parametrów, czyli tzw. rozkładem a priori. 

Bayesowski model statystyczny jest jednoznacznie określony przez gęstość łącznego 

rozkładu prawdopodobieństwa wektora zmiennych obserwowalnych, wektora wielkości 

prognozowanych oraz wektora parametrów [Osiewalski 2001]:  

,ݕ൫݌ ௙ݕ , ൯ߠ = ,ݕ൫݌ (ߠ)݌൯ߠ௙หݕ = ,ݕ௙หݕ൫݌  .(ߠ)݌(ߠ|ݕ)݌൯ߠ

Przejdźmy do specyfikacji procesu Copula-AR(1)-GARCH(1,1). Proces 

stochastyczny {yt = (y1,t, y2,t), t = 0, 1, 2, ..., T}, jest procesem Copula-AR(1)-

GARCH(1,1) z warunkowymi rozkładami t-Studenta, jeżeli spełnia następujące 

równania: 

titiiiti zyy ,1,1,0,,   ,        (1) 

tititi hz ,,,  ,         (2) 

1,1,
2

1,1,0,,   tiitiiiti hzh  ,       (3) 

gdzie i = 1, 2, t = 1, 2,..., T, i0 >0, i,1   0, βi,1  0, ),1,0(~}{ 1, i
T
tti viit , czyli  

{ ti , , t = 1, 2,...,T} jest ciągiem niezależnych zmiennych losowych o rozkładzie  

t-Studenta z zerową modalną, jednostkową precyzją i iv  stopniami swobody  

( )2/()( 2
,  iiti vvE  , 2iv ). Natomiast łączny rozkład wektora (1,t, 2,t), zadany jest 
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poprzez kopulę o gęstości c(u1, u2) [Patton 2006b, Jondeau i Rockinger 2006, Doman 

2011, Mokrzycka i Pajor 2016]. 

W modelu Copula-AR(1)-GARCH(1,1) z warunkowymi skośnymi rozkładami  

t-Studenta ),,1,0(~}{ 1, ii
T
tti viiSt   , gdzie ),,1,0( iivSt   oznacza skośny rozkład  

t-Studenta z zerową modalną, jednostkową precyzją, iv  stopniami swobody oraz 

parametrze asymetrii i . 

Kopula to funkcja określona na kostce [0, 1]n o wartościach w przedziale [0, 1], 

będąca obcięciem dystrybuanty n-wymiarowego rozkładu prawdopodobieństwa  

o jednostajnych rozkładach brzegowych na przedziale [0, 1] do kostki jednostkowej 

[Jaworski 2012, Durante i Sempi 2016, Doman 2011]. Podstawą do stosowania kopul  

w statystyce, a także w badaniach ekonometrycznych jest twierdzenie Sklara, który 

wykazał, że dla każdej n-wymiarowej dystrybuanty H istnieje taka kopula C, że zachodzi 

następująca równość H(x1,…,xn)=C(F1(x1),…,Fn(xn)), gdzie F1, …, Fn są dystrybuantami 

brzegowymi. Ponadto, jeśli dystrybuanty brzegowe są ciągłe, to kopula C wyznaczona 

jest jednoznacznie. Twierdzenie odwrotne do twierdzenia Sklara również jest prawdziwe, 

tzn. jeżeli C jest n-wymiarową kopulą, a F1, …, Fn są jednowymiarowymi 

dystrybuantami, to funkcja H(x1,…,xn)=C(F1(x1),…,Fn(xn)) jest n-wymiarową 

dystrybuantą, a F1, …, Fn jej dystrybuantami brzegowymi [Nelsen 1999, Jaworski 2012]. 

Z kolei rozszerzenie tego twierdzenia na rozkłady warunkowe, z warunkową kopulą, 

zostało przedstawione przez Pattona w 2006 r. Stosowanie twierdzenia z rozkładami 

warunkowymi jest możliwe w przypadku, gdy zbiór informacji względem, którego 

odbywa się warunkowanie jest taki sam dla warunkowej kopuli oraz warunkowych 

rozkładów brzegowych [Patton 2006b].  

Warunkowa gęstość wektora  ߝ௧ = ,ଵ,௧ߝ) -ଶ,௧)  w modelu Copula-AR(1)ߝ

GARCH(1,1) z warunkowymi rozkładami t-Studenta ma postać: 

,ଵ,௧ߝఌ൫݌ ଶ,௧ห௧ିଵ൯ߝ =

ܿ൫ݐభ
൫ߝଵ,௧ห௧ିଵ൯, మݐ

൫ߝଶ,௧ห௧ିଵ൯ห௧ିଵ൯ ௌ݂௧൫ߝଵ,௧; 0,1, ଵห௧ିଵ൯ ×=

                                                 × ௌ݂௧(ߝଶ,௧; 0,1, ଶ|௧ିଵ)    (4) 

gdzie )(vt  oznacza dystrybuantę jednowymiarowego rozkładu t-Studenta o zerowej 

modalnej, jednostkowej precyzji i ν stopniach swobody, zaś ),1,0;( vf St   jest gęstością 

tego rozkładu. Natomiast w przypadku zastosowania rozkładu skośnego t-Studenta dla 

 :௧ ma postaćߝ ଶ,௧ gęstość rozkładu prawdopodobieństwa wektoraߝ ݅ ଵ,௧ߝ
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,ଵ,௧ߝఌ൫݌ ଶ,௧ห௧ିଵ൯ߝ

= ܿ൫ݐభ,ఊభ
൫ߝଵ,௧ห௧ିଵ൯, మ,ఊమݐ

൫ߝଶ,௧ห௧ିଵ൯ห௧ିଵ൯ ௌ݂௧,ఊభ
൫ߝଵ,௧; 0,1, ଵ, ଵห௧ିଵ൯ߛ   

× ௌ݂௧,ఊమ
൫ߝଶ,௧; 0,1, ଶ,  ଶห௧ିଵ൯                                                                  (5)ߛ

gdzie ݐ,ఊ(∙) oznacza dystrybuantę jednowymiarowego rozkładu skośnego t-Studenta  

o zerowej modalnej, jednostkowej precyzji, ν stopniach swobody (v>2) i parametrze 

asymetrii >0, zaś ௌ݂௧,ఊ(∙; 0,1, ,  jest gęstością tego rozkładu i ma następującą postać (ߛ

[Osiewalski 2001, Pipień 2006]:  

ௌ݂௧,ఊ(ݔ|, ,ߤ ℎ, )

=  
2(

 + 1
2 )

( + ିଵ)(

ߨ√(2

 ඥℎିଵ [1 + (ℎ)ିଵ(ݔ − ݔ)(ஶ,଴ି)ܫଶߛ}ଶ(ߤ − (ߤ

+ ݔ)(଴,ஶ]ܫଶିߛ −   .଴,ହ(ାଵ)ି[{(ߤ

Z kolei łączny warunkowy rozkład wektora (y1,t, y2,t) przy ߤ௜,௧ = ߮௜,଴ + ,1−ݐ,݅ݕ1,݅߮ ݅ = 1,2  

jest następujący: 

,ଵ,௧ݕ௬൫݌ ଶ,௧ห௧ିଵ൯ݕ = ଵ,௧ݕ)ఌ൫݌ − ,ଵ,௧ )/ඥℎଵ,௧ߤ ଶ,௧ݕ) −  ଶ,௧ )/ඥℎଶ,௧ห௧ିଵ൯/ඥℎଵ,௧ℎଶ,௧ . (6)ߤ

Wobec powyższego oznaczając przez ߠ = ,′ீߠ) ′(′௖ߠ ∈  = ீ × ௖ ⊂ ܴ௠ wektor 

nieznanych parametrów modelu Copula-AR(1)-GARCH(1,1), gęstość łącznego rozkładu 

macierzy obserwacji ma postać: 

ீߠ|ݕ)݌ , (௖ߠ = ∏ ,ଵ,௧ݕ௬൫݌ ଶ,௧ห௧ିଵ൯்ݕ
௜ୀଵ ,    (7) 

przy czym ீߠ  oznacza wektor parametrów struktury AR(1)-GARCH(1,1), ߠ௖ wektor 

parametrów kopuli. 

W bayesowskim modelu Copula-AR(1)-GARCH(1,1), w którym nieznane 

parametry traktowane są jako zmienne losowe, gęstość łącznego rozkładu macierzy 

obserwacji i parametrów ma postać:  

,ݕ)݌ ீߠ , (௖ߠ = ீߠ|ݕ)݌ , ீߠ)݌(௖ߠ ,  ,(௖ߠ

gdzie (ߠ)݌ = ீߠ)݌ , ீߠ|ݕ)݌ ,ߠ ௖) jest gęstością rozkładu a priori wektoraߠ ,  .௖) jest tzwߠ

gęstością próbkową macierzy obserwacji, która w przypadku analizowanego modelu  

w swojej postaci zawiera gęstość określonej warunkowej kopuli oraz gęstości 

warunkowych rozkładów brzegowych (por. równanie 7). 

 W dalszej części pracy przyjęto, że gęstość rozkładu a priori nieznanych 

parametrów modelu Copula-AR(1)-GARCH(1,1) dla parametrów AR(1)-GARCH(1,1)  

z warunkowym rozkładem t-Studenta, czyli:  
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ீߠ = (߮ଵ,଴, ߮ଵ,ଵ, ,ଵ,଴ߙ ,ଵ,ଵߙ , ଵ,ଵߚ ଵ, ߮ଶ,଴, ߮ଶ,ଵ, ,ଶ,଴ߙ ,ଶ,ଵߙ  ଶ,ଵ ,ଶ), ma następującąߚ

strukturę (ீߠ)݌ = ,൫߮ଵ,଴݌ ߮ଶ,଴൯݌൫߮ଵ,ଵ, ߮ଶ,ଵ ൯ ∏ ଶ)݌௜,଴൯ߙ൫݌
௜ୀଵ ,௜,ଵߙ  gdzie ,(௜)݌ (௜,ଵߚ

,൫߮ଵ,଴݌ ߮ଶ,଴൯ = ே݂,ଶ൫߮ଵ,଴, ߮ଶ,଴ห(0,0)ᇱ, ;൯ܫ ,൫߮ଵ,ଵ݌  ߮ଶ,ଵ ൯ =
ଵ

ସ
,మ൫߮ଵ,ଵ(ଵ,ଵି)ܫ  ߮ଶ,ଵ ൯;   oraz 

dla i=1,2 ݌൫ߙ௜,଴൯ =  ா݂௫௣൫ߙ௜,଴หߣఈ൯, ఈߣ = ,௜,ଵߙ)݌ ;1 (௜,ଵߚ =
ଵ

ଶ
,௜,ଵߙ஻൫ܫ  ,௜,ଵ൯ߚ ܤ = [0,1]ଶ ∩

,ݔ)} :ᇱ(ݕ ݔ + ݕ < 1}; (௜)݌  =
ଵ

ఙ
exp ቀ−

௫ିఓ

ఙ
ቁ ߤ ;(௜)(ఓ,ஶ)ܫ = ߪ ;2 = 8; (௜)ܧ = 10. 

Gęstość rozkładu a priori przyjęto zgodnie z badaniami prowadzonymi przez Pajor 

[2003] oraz Pipienia [2006]. Podobnie gęstość rozkładu a priori nieznanych parametrów 

struktury AR(1)-GARCH(1,1) z  warunkowym rozkładem skośnym t-Studenta, czyli 

wektora parametrów: 

ீߠ = (߮ଵ,଴, ߮ଵ,ଵ, ,ଵ,଴ߙ ,ଵ,ଵߙ , ଵ,ଵߚ ,ଵ ,ଵߛ ߮ଶ,଴, ߮ଶ,ଵ, ,ଶ,଴ߙ ,ଶ,ଵߙ , ଶ,ଵߚ  :ଶ,ଶ), ma postaćߛ

(ீߠ)݌ = ,൫߮ଵ,଴݌ ߮ଶ,଴൯݌൫߮ଵ,ଵ, ߮ଶ,ଵ ൯ ∏ ଶ)݌௜,଴൯ߙ൫݌
௜ୀଵ ,௜,ଵߙ  gdzie ,(௜)݌(௜ߛ)݌ (௜,ଵߚ

dodatkowo gęstość rozkładu a priori parametrów asymetrii ߛଵ i ߛଶ to gęstość rozkładu 

log-normalnego o parametrach ߤ = 0, ߪ = 1 [Pipień 2006]. Natomiast gęstość rozkładu 

a priori dla parametrów kopuli zostały tak dobrane, by rozkład a priori dla współczynnika 

tau Kendalla był dość rozproszony [Mokrzycka i Pajor 2016]. Zestawienie tych 

rozkładów przedstawia Tabela nr 1. 
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Tabela 1. Zestawienie kopul stosowanych do specyfikacji modelu Copula-AR(1)-GARCH(1,1) wraz ze wskazaniem przyjętych rozkładów a priori oraz podstawowymi charakterystykami 
dotyczącymi zależności 
 

Kopula 
Param. 
kopuli 

rozkład  
a priori 

tau Kendalla Zależności w ogonach 

Franka }0{\R  )100,0(~ N  
 )(1

4
1 1 

  D , gdzie 

 


x

t

k

kk dt
e

t

x

k
xD

0 1
)(  funkcja Debye’a 

0,0  LU   

Claytona 0  )1(~ Exp  
2



  

1

2,0


 LU  

Gumbela 1  ),1()1,1(~ IExp  


 
1

1  
0,22

1

 LU    

Claytona-Gumbela 
(BB1) 

0  
1  

)1(~ Exp , 

),1()1,1(~ IExp  
  )2(

2
1, 


 
 
11

2,22


 LU

Joego-Claytona 
(BB7) 

1  
0  

),1()1,1(~ IExp  

)1(~ Exp  

















 










2))1()2((
11

1

21,
2

)2(

)1(4

)2(

2
1

,








 

B

 
 
11

2,22


 LU

 
Symetryzowana 
Joego-Claytona 

1  
0  

),1()1,1(~ IExp  

)1(~ Exp  
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Źródło: opracowano na podstawie J. Mokrzycka, A. Pajor, 2016; „N(0,100)” oznacza rozkład normalny o średniej 0 i odchyleniu standardowym 10; Exp(1) rozkład wykładniczy z parametrem 1; 
,rozkład wykładniczy na (1 (ଵ,ஶ)ܫ(1,1)݌ݔܧ ∞) o parametrach ߤ = 1, ߪ = 1. 
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3. ESTYMACJA I PORÓWNANIE MODELI BAYESOWSKICH 

Podstawą wnioskowania w modelach bayesowskich są zasady rachunku 

prawdopodobieństwa oraz twierdzenie Bayesa. Estymacja parametrów modelu 

statystycznego polega na wyznaczeniu - z gęstości ݕ)݌, ீߠ , (௖ߠ = ீߠ|ݕ)݌ , ீߠ)݌(௖ߠ ,  – (௖ߠ

rozkładu warunkowego wektora zmiennych losowych ߠ = ீߠ) ,  ௖) przy ustalonymߠ

wektorze obserwacji y, czyli tzw. rozkładu a posteriori:  

(ݕ|ߠ)݌ =
,ݕ)݌ (ߠ

(ݕ)݌
=

(ߠ)݌(ߠ|ݕ)݌

׬ ߠ݀(ߠ)݌(ߠ|ݕ)݌
ఏ

, 

gdzie (ݕ)݌ = ׬ ߠ݀(ߠ)݌(ߠ|ݕ)݌
ఏ

 jest brzegową gęstością wektora obserwacji. W modelu 

bayesowskim rozkład a posteriori łączy wstępną wiedzę badacza dotyczącą parametrów 

ߠ = ீߠ) ,  (ߠ|ݕ)݌ ௖) z informacją jaką niosą dane empiryczne, określaną przez gęstośćߠ

[Pajor 2003]. 

 Porównanie konkurencyjnych modeli bayesowskich wymaga obliczenia, na 

podstawie wzoru Bayesa, prawdopodobieństwa a posteriori tych modeli [Osiewalski 

2001]. Niech M={ܯଵ, … ,  ௡} będzie kompletnym zbiorem wzajemnie rozłącznychܯ

modeli bayesowskich: ܯ௜: ݌௜൫ݕ, ൯(௜)ߠ = ,൯(௜)ߠ௜൫݌൯(௜)ߠหݕ௜൫݌ ݅ = 1, … , ݉, gdzie ߠ(௜) ∈  

jest wektorem parametrów modelu ܯ௜. Prawdopodobieństwo a posteriori modelu, 

wyznaczone na podstawie wzoru Bayesa, jest postaci:  

(ݕ|௜ܯ)݌ =
(௜ܯ|ݕ)݌(௜ܯ)݌

∑ ௡(௝ܯ|ݕ)݌(௜ܯ)݌
௝ୀଵ

, ݅ = 1, … , ݉                           (8) 

gdzie ݌(ܯ௜) to prawdopodobieństwo a priori modelu ܯ௜, ݌(ܯ|ݕ௜) to brzegowa gęstość 

macierzy obserwacji w modelu ܯ௜: ݌(ܯ|ݕ௜) = (ݕ)௜݌ = ׬ ((௜)ߠ|ݕ)௜݌
 
  .(௜)ߠ൯݀(௜)ߠ௜൫݌

Model z najwyższym prawdopodobieństwem a posteriori uznawany jest za model 

najlepiej wyjaśniający dane empiryczne. Z kolei dobór prawdopodobieństw a priori 

modeli ݌(ܯ௜), sprowadza się najczęściej do przyjęcia, że są one jednakowe lub nadania 

wyższych prawdopodobieństw modelom o mniejszej liczbie parametrów, zgodnie z tzw. 

zasadą brzytwy Ockhama [Osiewalski 2001]. 

 Jeżeli głównym celem badawczym jest wnioskowanie o parametrach wspólnych 

dla wszystkich modeli (np. wnioskowanie o współczynniku tau-Kendalla), możliwe jest 

pominięcie wyboru najbardziej prawdopodobnego modelu i zastosowanie techniki 

bayesowskiego łączenia wiedzy (ang. Bayesian pooling approach). Metoda sprowadza 

się do obliczenia średniej ważonej poszczególnych gęstości a posteriori wspólnych 
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parametrów z wagami równymi prawdopodobieństwom a posteriori modeli [Osiewalski, 

2001]. Gęstość a posteriori dla wektora wspólnych parametrów  ߣ ma wówczas postać:  

(ݕ|ߣ)݌ = ∑ ௡(ݕ|ߣ)௜݌(ݕ|௜ܯ)݌
௜ୀଵ , gdzie ݌(ܯ௜|ݕ) jest prawdopodobieństwem a posteriori 

obliczonym zgodnie ze wzorem (8), ݌௜(ݕ|ߣ) jest gęstością brzegowego rozkładu  

a posteriori wektora λ w modelu ܯ௜. Zastosowanie bayesowkiego łączenia wiedzy 

pozwala na uwzględnienie zarówno niepewności co do wartości nieznanego parametru 

oraz, poprzez uśrednienie wiedzy o wspólnych parametrach, niepewności co do 

prawidłowej specyfikacji modelu w skończonej klasie modeli [Osiewalski 2001].  

 

4. LOSOWANIE Z FUNCKJĄ WAŻNOŚCI 

Wyznaczenie charakterystyk rozkładu a posteriori w modelu bayesowskim w jawnej 

postaci nie zawsze jest możliwe z uwagi na skomplikowaną postać gęstości rozkładu  

a posteriori tego rozkładu. Wobec tego do wyznaczenia tych charakterystyk stosuje się 

numeryczne metody całkowania, najbardziej rozpowszechnionymi w literaturze 

przedmiotu w kontekście wnioskowania bayesowskiego są metody Monte Carlo 

[Osiewalski 2001, Pajor 2003, Pipień 2006]. W przedmiotowej pracy z uwagi na niedużą 

liczbę parametrów zastosowano metodę Monte Carlo z funkcją ważności (ang. Monte 

Carlo Importance Sampling). Metoda ta była jedną z pierwszych metod stosowanych  

w ekonometrii bayesowskiej [Kloek i van Dijk 1978]. 

Ponieważ (ݕ|ߠ)݌ =
௣(௬|ఏ)௣(ఏ)

׬ ௣(௬|ఏ)௣(ఏ)ௗఏ೭

, więc gęstość rozkładu a posteriori wektora 

parametrów modelu, ߠ, jest proporcjonalna do iloczynu ݂(ߠ) =  .(ߠ)݌(ߠ|ݕ)݌

Wyznaczenie charakterystyk rozkładu a posteriori wektora parametrów ߠ sprowadza się 

do obliczenia wartości oczekiwanych, względem rozkładu a posteriori, pewnych funkcji 

wektora ߠ [Osiewalski 2001, Pipień 2006]. Niech ݃ oznacza tę funkcję, a ݏ będzie 

gęstością pewnego rozkładu wówczas:  

ܫ = (ݕ|(ߠ)݃)ܧ = න ߠ݀(ݕ|ߠ)݌(ߠ)݃
௵

=
׬ ߠ݀(ߠ)݂(ߠ)݃

௵

׬ ߠ݀(ߠ)݂
௵

=
׬ (ߠ)݃

(ߠ)݂
(ߠ)ݏ (ߠ)ܵ݀

௵

׬
(ߠ)݂
(ߠ)ݏ (ߠ)ܵ݀

௵

                                                                  (9) 

gdzie ݀ܵ(ߠ) oznacza całkowanie względem absolutnie ciągłej miary probabilistycznej S 

określonej na σ-algebrze zbioru , o dodatniej funkcji gęstości s [Pipień 2006]. Wobec 
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powyższego obliczenie szukanej wartości oczekiwanej I sprowadza się do obliczenia 

ilorazu dwóch wartości oczekiwanych względem znanej miary S, które to z kolei możemy 

estymować za pomocą średnich z próby. Estymator Monte Carlo  wielkości I ma postać 

[Osiewalski 2001, Pipień 2006]: 

௡෡ܫ =

1
݊ ∑

݃൫ߠ(௜)൯݂൫ߠ(௜)൯
((௜)ߠ)ݏ

௡
௜ୀଵ

1
݊ ∑

((௜)ߠ)݂
((௜)ߠ)ݏ

௡
௜ୀଵ

=
∑ ݃൫ߠ(௜)൯ݓ൫ߠ(௜)൯௡

௜ୀଵ

∑ ௡((௜)ߠ)ݓ
௜ୀଵ

,                                              (10) 

gdzie (ߠ)ݓ =
௙(ఏ)

௦(ఏ)
 oznacza tzw. funkcję wagową.  

Jeżeli funkcja ݂ jest proporcjonalna do gęstości właściwego rozkładu 

prawdopodobieństwa oraz ߠ(ଵ), … , (௡)ߠ ∈  są losowane niezależnie z rozkładu  

o gęstości s oraz wartość oczekiwana E(g|y) istnieje i jest skończona, to zachodzi 

zbieżność prawie wszędzie: ܫ௡෡ → ,(ݕ|݃)ܧ  ݊ → ∞ (estymator jest zgodny). Ponadto przy 

spełnieniu pewnych warunków podanych m.in. w pracy Geweke [1989] estymator ten 

jest asymptotycznie normalny.  

 Stosowanie metod Monte Carlo związane jest z obecnością błędów 

numerycznych. Standardowy błąd numeryczny metody Monte Carlo (NSE ang. 

numerical standard error) postaci ௡
෢ = ට

∑ (௚൫ఏ(೔)൯ିூ೙෢)మ௪(ఏ(೔))మ೙
೔సభ

(∑ ௪(ఏ(೔))೙
೔సభ )మ  powinien osiągać 

wartości zerowe. Estymator współczynnika RNE (ang. relative numerical efficiency, 

względnej efektywności numerycznej) postaci ܴܰܧ෣ =
ଵ

௡೙
෢ మ ൤

∑ ௚మ൫ఏ(೔)൯௪൫ఏ(೔)൯೙
೔సభ

∑ ௪൫ఏ(೔)൯೙
೔సభ

− ௡෡ܫ
ଶ

൨ 

powinien przyjmować wartości bliskie jedynce, co zachodzi wówczas, gdy losowanie 

według funkcji ważności prawie nie różni się od losowania z rozkładu a posteriori 

[Osiewalski 2001]. Z kolei współczynnik zmienności funkcji wagowej ߛ௡ =

ඨ∑ ೢమ(ഇ(೔))
೙

ିቆ∑
ೢቀഇ(೔)ቁ

೙
೙
೔సభ ቇ

మ 

 ೙
೔సభ

భ
೙

∑ ௪(ఏ(೔))೙
೔సభ

  określa stosunek empirycznego odchylenia standardowego 

wartości wag do średniej wagi. Nieograniczony wzrost tego współczynnika wraz ze 

wzrostem liczby losowań, obserwowany w postaci nagłych skoków jego wartości, 

wskazuje na to, że dobrana funkcja ważności jest nieodpowiednia [Osiewalski 2001]. 

 W zastosowaniach metody Monte Carlo dobór funkcji ważności jest bardzo 

ważny - im funkcja ważności lepiej przybliża jądro gęstości rozkładu a posteriori tym 

uzyskiwane realizacje „nieznacznie” różnią się od realizacji z rzeczywistego rozkładu  
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a posteriori, co skutkuje dobrymi aproksymacjami numerycznymi. W przedmiotowej 

pracy za funkcję ważności przyjęto wielowymiarowy rozkład t-Studenta z 3 stopniami 

swobody zgodnie z pracami Osiewalskiego [2001] i Pipienia [2006]. Parametry tego 

rozkładu (wektor średnich i macierz kowariancji) zostały oszacowane iteracyjnie na 

podstawie wstępnych 100 000 lub 1 mln przebiegów algorytmu. 

 Stosowanie metody Monte Carlo z funkcją ważności znacznie upraszcza sposób 

szacowania wartości brzegowej gęstości macierzy obserwacji p(y), gdyż jej estymatorem 

jest średnia arytmetyczna wag: 
ଵ

௡
∑ ௡((௜)ߠ)ݓ

௜ୀଵ . Warto zaznaczyć, że stosowanie 

algorytmu Metropolisa-Hastingsa wymaga zastosowania bardziej czasochłonnych 

(obliczeniowo) estymatorów, np. skorygowanej średniej harmonicznej, estymatora Chiba 

i Jeliazkova, estymatora Laplace’a i Metropolisa, czy skorygowanej średniej 

arytmetycznej [Mokrzycka i Pajor 2016, Pajor 2017]. 

 

5. WYNIKI EMPIRYCZNE 

Przedmiotem modelowania jest zmienność i struktura zależności dziennych, 

procentowych logarytmicznych stóp zwrotu, obliczonych na podstawie ceny zamknięcia 

subindeksów indeksu WIG: WIG-Budownictwo i WIG Informatyka w okresie od  

1 sierpnia 2005 r. do 21 września 2015 r. Wybór tego okresu wynika z kontynuacji badań 

nad strukturą zależności dla subindeksów indeksu WIG przedstawionych w pracy 

Mokrzyckiej i Pajor [2016]. Liczba obserwacji (stóp zwrotu) szeregu subindeksów 

wyniosła 2539. Dane pochodziły z portalu www.stooq.pl. Wykresy oraz charakterystyki 

próbkowe logarytmicznych procentowych stóp zwrotu zawiera tabela nr 2.  

Tabela 2. Wykresy oraz charakterystyki próbkowe logarytmicznych procentowych stóp zwrotu 
 

 
WIG-Budownictwo 

Średnia: 0,009; odch. stand.: 1,4833; skośność: -0,3697; kurtoza: 6.4209; Min: -8.3796, Max: 
8.2028 

 
WIG-Informatyka 
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Średnia: 0,013; odch. stand.: 1,3495; skośność: -0,4282; kurtoza: 5.8886; Min: -8.8167, Max: 
6.2388 

Źródło: Opracowanie własne. 

 

Wykresy analizowanych szeregów czasowych obrazują występowanie obserwacji 

nietypowych oraz obszarów skupiania się zmienności (ang. volatility clustering), czyli 

okresów o dużych co do wartości bezwzględnej stopach zwrotu, po których następują 

okresy o mniejszych wartościach stóp zwrotu. Wartość kurtozy: 5,8886 i 6.4209 wskazuje 

na leptokurtyczność rozkładów empirycznych (duża koncentracja rozkładu wokół 

modalnej oraz występowanie grubych ogonów). Współczynniki skośności wskazują na 

występowanie lewostronnej asymetrii rozkładu. Wartości współczynnika korelacji 

liniowej oraz tau-Kendala przedstawia tabela nr 3. Wartości te sugerują dodatnią 

zależność. 

Tabela 3. Próbkowe współczynniki korelacji liniowych oraz tau-Kendalla  
Dane Współczynnik  

korelacji liniowej 
Współczynnik  
tau-Kendalla 

(WIGBUD, WIGINF) 0,5480 0,3384 

Źródło: Opracowanie własne. 

 

Wyniki zamieszczone w tabelach 4-6 przedstawiają wartości logarytmu naturalnego 

brzegowej gęstości a posteriori macierzy obserwacji (ln(p(y|M))) oraz wartości 

prawdopodobieństwa a posteriori poszczególnych modeli, przy założeniu, że a priori 

modele są jednakowo prawdopodobne. 

Tabela 4. Zestawienie prawdopodobieństw a posteriori modeli Copula-AR(1)-GARCH(1,1) z warunkowymi 
brzegowymi rozkładami t-Studenta. 

  (WIGBUD, WIGINF) 

Lp. Kopula ln(p(y|M)) p(M) p(M|y) 
1 Franka -8145,407 0,0909 0 
2 Claytona -8128,834 0,0909 0 
3 Gumbela -8149,97 0,0909 0 
4 Claytona-Gumbela(BB1) -8083,948 0,0909 0,71061 
5 Joe-Claytona(BB7) -8086,289 0,0909 0,06838 
6 Symetryzowana Joe-Claytona -8085,13 0,0909 0,2178 
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7 obrócona Claytona -8128,838 0,0909 0 
8 obrócona Gumbela -8092,694 0,0909 0,00011 
9 Normalna -8105,155 0,0909 0 

10 t-Studenta -8089,383 0,0909 0,0031 
11 zm. Niezależne -8452,584 0,0909 0 

Źródło: opracowanie własne. 
 

Tabela 5. Zestawienie prawdopodobieństw a posteriori modeli Copula-AR(1)-GARCH(1,1) z warunkowymi 
brzegowymi rozkładami skośnymi t-Studenta. 

  (WIGBUD, WIGINF) 

Lp. Kopula ln(p(y|M)) p(M) p(M|y) 
1 Franka -8148,594 0,0909 0 
2 Claytona -8131,529 0,0909 0 
3 Gumbela -8157,282 0,0909 0 
4 Claytona-Gumbela(BB1) -8089,403 0,0909 0,7164 
5 Joe-Claytona(BB7) -8091,892 0,0909 0,0595 
6 Symetryzowana Joe-Claytona -8090,584 0,0909 0,2199 
7 obrócona Claytona -8228,252 0,0909 0 
8 obrócona Gumbela -8094,758 0,0909 0,0034 
9 normalna -8111,274 0,0909 0,0000 

10 t-Studenta -8096,188 0,0909 0,0008 
11 zm. Niezależne -8455,067 0,0909 0 

Źródło: opracowanie własne. 
 

Tabela 6. Zestawienie prawdopodobieństw a posteriori modeli („t” ozn. model z warunkowym brzegowym rozkładem 
t-Studenta, „t-sk” ozn.  model z warunkowym brzegowym skośnym rozkładem t-Studenta). 

  (WIGBUD, WIGINF) 

Lp. Kopula  ln(p(y|M)) p(M) p(M|y) 
1 

Franka 
t -8145,407 0,0455 0 

2 t-sk -8148,594 0,0455 0 
3 

Claytona 
t -8128,834 0,0455 0 

 4 t-sk -8131,529 0,0455 0 
5 

Gumbela 
t -8149,97 0,0455 0 

 6 t-sk -8157,282 0,0455 0 
7 

Claytona-Gumbela(BB1) 
t -8083,948 0,0455 0,7076 

 8 t-sk -8089,403 0,0455 0,0030 
9 

Joe-Claytona(BB7) 
t -8086,289 0,0455 0,0681 

 10 t-sk -8091,892 0,0455 0,0003 
11 

Symetryzowana Joe-Claytona 
t -8085,13 0,0455 0,2169 

 12 t-sk -8090,584 0,0455 0,0009 
13 

obrócona Claytona 
t -8128,838 0,0455 0 

 14 t-sk -8228,252 0,0455 0 
15 

obrócona Gumbela 
t -8092,694 0,0455 0,0001 

 16 t-sk -8094,758 0,0455 0,0000 
17 

normalna 
t -8105,155 0,0455 0 

 18 t-sk -8111,274 0,0455 0 
19 

t-Studenta 
t -8089,383 0,0455 0,0031 

20 t-sk -8096,188 0,0455 0 
21 

zm. Niezależne 
t -8452,584 0,0455 0 

22 t-sk -8455,067 0,0455 0 
Źródło: opracowanie własne. 
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Wartości brzegowych gęstości a posteriori macierzy obserwacji zostały 

oszacowane z wykorzystaniem metody Monte Carlo (MC) z funkcją ważności (gęstością 

wielowymiarowego rozkładu t-Studenta z 3 stopniami swobody) z zachowaniem 

odpowiedniej korekty wartości z uwagi na restrykcje narzucone na wartości parametrów 

każdego z modeli [Osiewalski 2001]. Po ustaleniu charakterystyk funkcji ważności 

(wektora średnich i macierzy precyzji) wykonano 1 mln symulacji w ramach każdego 

modelu. W tabeli 4 i 5 zaprezentowano wyniki porównania 11 modeli Copula-AR(1)-

GARCH(1,1) z odpowiednio warunkowym brzegowym rozkładem t-Studenta  

i warunkowym brzegowym skośnym rozkładem t-Studenta. Dla stóp zwrotu 

subindeksów WIG-Budownicto i WIG-Informatyka najbardziej prawdopodobnym 

modelem okazał się model z kopulą Clayona-Gumbela. Model AR(1)-GARCH(1,1)  

z kopulą niezależną został zdecydowanie odrzucony przez dane. W tabeli 6 

przedstawiono wyniki porównania wszystkich 22 modeli. Najwyższe wartości 

prawdopodobieństw a posteriori osiągnęły modele z brzegowym warunkowym 

symetrycznym rozkładem t-Studenta i kopulą Claytona-Gumbela. Niskie 

prawdopodobieństwo a posteriori modeli ze skośnym rozkładem t-Studenta potwierdza 

stwierdzenie zamieszczone w pracy Mokrzyckiej i Pajor [2016], że „na wartość 

współczynnika skośności mają wpływ obserwacje znajdujące się daleko w lewym ogonie” 

[Mokrzycka i Pajor 2016, s. 136]. 

Tabela 7. Charakterystyki a posteriori oraz NSE i RNE dla wartości oczekiwanych parametrów modeli 
 

Parametr 

Copula-AR(1)-GARCH(1,1) 
z brzegowymi rozkładami t-Studenta 
i kopulą Claytona-Gumbela (BB1) 

Copula-AR(1)-GARCH(1,1) 
z brzegowymi rozkładami skośnymi t-Studenta 
i kopulą Claytona-Gumbela (BB1) 

E( |y) D( |y) NSE RNE E( |y) D( |y) NSE RNE 

࣐૚,૙ 0,028 0,023 5,7E-05 0,1586 0,065 0,041 1,1E-04 0,144 
࣐૚,૚ 0,072 0,018 4,5E-05 0,1573 0,071 0,018 4,7E-05 0,141 
 ૚,૙ 0,024 0,008 3,2E-05 0,0662 0,024 0,008 3,3E-05 0,067ࢻ
 ૚,૚ 0,031 0,007 2,4E-05 0,0862 0,032 0,007 2,4E-05 0,085ࢻ
 ૚,૚ 0,931 0,016 5,7E-05 0,0760 0,929 0,016 6,0E-05 0,073ࢼ
૚ 5,242 0,511 0,00149 0,1170 5,223 0,508 1,5E-03 0,114 

࣐૛,૙ 0,048 0,022 5,4E-05 0,1574 0,109 0,039 1,0E-04 0,148 
࣐૛,૚ -0,043 0,018 4,6E-05 0,1564 -0,045 0,018 4,9E-05 0,136 
 ૛,૙ 0,046 0,015 5,9E-05 0,0626 0,045 0,014 4,8E-05 0,091ࢻ
 ૛,૚ 0,040 0,009 2,7E-05 0,1031 0,041 0,009 2,7E-05 0,102ࢻ
 ૛,૚ 0,896 0,024 9,1E-05 0,0692 0,895 0,023 7,6E-05 0,095ࢼ
૛ 5,316 0,542 0,00157 0,1189 5,395 0,566 1,9E-03 0,092 
 ૚ 0,427 0,043 0,00011 0,1572 0,460 0,048 1,3E-04 0,135ࣂ
 ૛ 1,217 0,027 6,9E-05 0,1537 1,203 0,027 7,2E-05 0,141ࣂ
 ૚ --- --- --- --- 0,972 0,023 6,1E-05 0,138ࢽ
 ૛ --- --- --- --- 0,956 0,022 5,8E-05 0,147ࢽ

Źródło: opracowanie własne. E( |y) – wartość oczekiwana, D( |y) – odchylenie standardowe 
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Rys. 1. Współczynniki zmienności wag w estymacji modelu Copula-AR(1)-GARCH(1,1) z kopulą Claytona-
Gumbela(BB1)  

 
Źródło: opracowanie własne 

 

W tabeli 7  przedstawiono charakterystyki a posteriori dla wartości oczekiwanych 

parametrów najbardziej prawdopodobnych modeli oraz błędy numeryczne oszacowań 

(NSE i RNE). Rysunek nr 1 przedstawia współczynnik zmienności wag – na osi poziomej 

jako jednostkę przyjęto 1000 iteracji. Uzyskane i przedstawione błędy numeryczne  

w ocenie autorki są do zaakceptowania. Błąd NSE przyjmuje wartości bliskie zeru,  

a współczynniki zmienności wag ߛ௡ nie wykazują nagłych dużych skoków wartości, 

jedynie RNE nie jest bliskie jedynce, co oznacza, że istnieje możliwość dobrania lepszej 

funkcji ważności, która efektywniej „typowałaby” obserwacje z faktycznego rozkładu  

a posteriori.  

 

Rys. 2. Histogramy brzegowych rozkładów a posteriori parametrów asymetrii w modelu  
z kopulą Claytona-Gumbela. Linia ciągła gęstość rozkładu a priori. 
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Źródło: opracowanie własne. 

 

Na powyższych wykresach zaprezentowano histogramy brzegowych rozkładów  

a posteriori wraz z rozkładem a priori parametrów asymetrii ߛଵ i ߛଶ uzyskane w modelu 

z kopulą Claytona-Gumbela. Rozkłady tych parametrów są przesunięte nieco w lewo od 

1, jedynka znajduje się w obszarze wysokich wartości funkcji gęstości rozkładu  

a posteriori. 

 

Tabela 8. Wartości oczekiwane i odchylania standardowe (w nawiasach) a posteriori współczynnika tau Kendalla  
i zależności ogonowych  
 

 
Copula-AR(1)-GARCH(1,1) 

z brzegowymi rozkładami t-Studenta 
Copula-AR(1)-GARCH(1,1) 

z brzegowymi rozkładami  
skośnymi t-Studenta 

Kopula 
tau  

Kendalla 
λU λL 

tau 
Kendalla 

λU λL 

Franka 
0,3366 

(0,0119) 
0 

(0) 
0 

(0) 
0,3364 

(0,0119) 
0 

(0) 
0 

(0) 

Claytona 
0,2706 

(0,0106) 
0 

(0) 
0,3927 

(0,0197) 
0,2828 

(0,0116) 
0 

(0) 
0,4150 

(0,0209) 

obrócona Claytona 
0,2706 

(0,0106) 
0,3928 

(0,0197) 
0 

(0) 
0,2505 

(0,0122) 
0,3541 

(0,0238) 
0 

(0) 

Gumbela 
0,3125 

(0,0121) 
0,3895 

(0,0135) 
0 

(0) 
0,3149 

(0,0127) 
0,3921 

(0,0142) 
0 

(0) 

obrócona Gumbela 
0,3116 

(0,0120) 
0 

(0) 
0,3884 

(0,0134) 
0,3202 

(0,0123) 
0 

(0) 
0,3981 

(0,0136) 

Claytona-Gumbela(BB1) 
0,3200 

(0,0134) 
0,2322 

(0,0224) 
0,2622 

(0,0309) 
0,3220 

(0,0135) 
0,2199 

(0,0229) 
0,2838 

(0,0325) 

Joego-Claytona (BB7) 
0,3148 

(0,0119) 
0,2844 

(0,0262) 
0,3222 

(0,0248) 
0,3157 

(0,0119) 
0,2678 

(0,0275) 
0,3390 

(0,0263) 
Symetryzowana  
Joego-Claytona 

-- 
0,2402 

(0,0291) 
0,3561 

(0,0223) 
-- 

0,2212 
(0,0304) 

0,3712 
(0,0236) 

Normalna 
0,320 

(0,0111) 
0 

(0) 
0 

(0) 
0,3309 

(0,0112) 
0 

(0) 
0 

(0) 

t-Studenta 
0,3288 

(0,0123) 
0,1669 

(0,0401) 
0,1669 

(0,0401) 
0,3283 

(0,0123) 
0,1621 

(0,0404) 
0,1621 

(0,0404) 
Źródło: opracowanie własne. 
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Rys. 3. Histogramy brzegowych rozkładów a posteriori współczynnika tau Kendalla w modelu z kopulą Claytona-
Gumbela (po lewej dla modelu z brzegowymi rozkładami t-Studenta, po prawej dla modelu z brzegowymi rozkładami 
skośnymi t-Studenta). Linia ciągła gęstość rozkładu a priori. 

 
Źródło: opracowanie własne. 
 
Rys. 4. Histogramy brzegowych rozkładów a posteriori zależności ogonowych w modelu z brzegowymi rozkładami  
t-Studenta (wiersz pierwszy) i skośnymi t-Studenta (wiersz drugi) oraz kopulą Claytona-Gumbela (po lewej: górna, po 
prawej: dolna). Linia ciągła gęstość rozkładu a priori. 
 

 

Źródło: opracowanie własne. 

 

Charakterystyki rozkładów a posteriori współczynnika tau-Kendalla (przedstawione  

w tabeli 8) wskazują na dodatnią zależność, tj. prawdopodobieństwo realizacji wektora 

losowego uporządkowanego zgodnie jest wyższe niż prawdopodobieństwo niezgodnego 

uporządkowania tego wektora. Szacowanie zależności ogonowych dało wartości 

niezerowe, co oznacza niezerowe prawdopodobieństwo równoczesnego przyjmowania 
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wartości ekstremalnych. W modelu z kopulą Claytona-Gumbela na histogramach 

brzegowego rozkładu a posteriori zależności ogonowych (zob. rys. 4)  widoczne jest 

nieznaczne przesunięcie rozkładu parametru dolnej zależności ogonowej w stosunku do 

rozkładu górnej zależności ogonowej. Wyższą wartość oczekiwaną a posteriori uzyskano 

dla dolnej zależności ogonowej. 

 

Tabela 9. Wyniki bayesowskiego łączenia wiedzy dla parametrów wspólnych modeli  

 

Parametr 

Copula-AR(1)-
GARCH(1,1) 
z brzegowymi 
rozkładami 
 t-Studenta (11 modeli) 

Copula-AR(1)-
GARCH(1,1) 
z brzegowymi 
rozkładami skośnymi 
 t-Studenta  (11 modeli) 

Copula-AR(1)-
GARCH(1,1) 
(22 modele) 

E( |y) D( |y) E( |y) D( |y) E( |y) D( |y) 

࣐૚,૙ 0,0284 0,0227 0,0648 0,0408 0,0285 0,0230 
࣐૚,૚ 0,0720 0,0177 0,0713 0,0177 0,0720 0,0177 
 ૚,૙ 0,0233 0,0083 0,0242 0,0085 0,0233 0,0083ࢻ
 ૚,૚ 0,0310 0,0070 0,0316 0,0070 0,0310 0,0070ࢻ
 ૚,૚ 0,9315 0,0158 0,9299 0,0160 0,9315 0,0157ࢼ
૚ 5,1495 0,5174 5,1366 0,5132 5,1494 0,5194 

࣐૛,૙ 0,0486 0,0215 0,1092 0,0388 0,0488 0,0219 
࣐૛,૚ -0,0428 0,0181 -0,0451 0,0182 -0,0428 0,0181 
 ૛,૙ 0,0455 0,0148 0,0455 0,0144 0,0455 0,0148ࢻ
 ૛,૚ 0,0400 0,0086 0,0404 0,0086 0,0400 0,0086ࢻ
 ૛,૚ 0,8956 0,0240 0,8951 0,0235 0,8956 0,0239ࢼ
૛ 5,2286 0,5457 5,3144 0,5667 5,2289 0,5482 
 --- --- ૚ --- --- 0,9721 0,0228ࢽ
 --- --- ૛ --- --- 0,9557 0,0223ࢽ

tau-Kendalla 0,2500 0,1324 0,2508 0,1337 0,2500 0,1324 
λL 0,2865 0,0494 0,3066 0,0485 0,2866 0,0491 
λU 0,2373 0,0280 0,2325 0,0352 0,2373 0,0278 

Źródło: opracowanie własne. E( |y) – wartość oczekiwana, D( |y) – odchylenie standardowe 

 

W tabeli 9 zamieszczono wyniki bayesowskiego łączenia wiedzy dla charakterystyk 

rozkładu a posteriori parametrów modelu. Zastosowanie tej techniki wpłynęło na 

obniżenie wartości współczynnika tau Kendalla oraz niewielkie zwiększenie wartości 

dolnej zależności ogonowej w stosunku do modelu o najwyższym prawdopodobieństwie 

a posteriori.  

 

6. PODSUMOWANIE 

W pracy podjęto próbę modelowania zmienności i zależności pomiędzy finansowymi 

szeregami czasowymi z wykorzystaniem modeli Copula-AR(1)-GARCH(1,1)  

z brzegowymi warunkowymi rozkładami t-Studenta i skośnymi t-Studenta oraz 

jedenastoma typami kopul. Do tego celu wykorzystano bayesowskie wnioskowanie 

statystyczne, które jest podejściem formalnym i całościowym. Z uwagi na 
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skomplikowane postaci gęstości rozkładów a posteriori charakterystyki tych 22 

rozkładów, oszacowano stosując metodę Monte Carlo z funkcją ważności. Estymacja 

modeli została wykonana dla logarytmicznych, procentowych stóp zwrotu subindeksów: 

WIG-Budownictwo i WIG-Informatyka. W wyniku formalnego bayesowskiego 

porównania 22 modeli wytypowano model Copula-AR(1)-GARCH(1,1) z kopulą 

Claytona-Gumbela i brzegowym, warunkowym, symetrycznym rozkładem t-Studenta 

jako model najlepiej opisujący stopy zwrotu subindeksów. W obu przypadkach 

analizowane modele Copula-GARCH z brzegowym warunkowym rozkładem skośnym  

t-Studenta uzyskały wartości prawdopodobieństw a posteriori dużo niższe od modeli  

z symetrycznym rozkładem t- Studenta. Uzyskane wyniki potwierdziły, że próbkowa 

ujemna wartość współczynnika skośności dla zwrotu subindeksów wynika  

z występowania obserwacji nietypowych w lewym ogonie rozkładu. 

Ponadto w pracy zaprezentowano także wyniki estymacji współczynnika tau 

Kendalla oraz zależności ogonowych zarówno dla poszczególnych 22 modeli jak również 

estymację tych wielkości z zastosowaniem techniki bayesowskiego łączenia wiedzy. 

Uzyskane wyniki wskazują na częstsze występowanie uporządkowania zgodnego niż 

niezgodnego w analizowanej parze składowych wektora losowego (dodatnia wartość 

współczynnika tau Kendalla) oraz występowanie asymetrycznej struktury zależności  

w ogonach rozkładów (kopula Claytona-Gumbela). 

Przedstawiona w pracy estymacja bayesowkich modeli Copula-GARCH oraz ich 

porównanie była kontynuacją badań prezentowanych w pracy Mokrzyckiej i Pajor 

[2016]. Kolejnym etapem badawczym będzie opracowanie dynamicznych modeli 

Copula-GARCH i ich formalne porównanie z modelami statycznymi lub MGARCH (ang. 

Multivariate GARCH). Następnie wykorzystanie tych modeli do szacowania wartości 

zagrożonej (ang. Value at Risk), oczekiwanego niedoboru (ang. expected shortfall) oraz 

oceny występowania efektu zarażania (ang. contagion) na rynkach finansowych. 
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