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Abstract

Testing hypotheses or evaluation confidence intervals requires knowledge of some  
statistics’ distributions. It is convenient if the probability distribution of the statistic 
converges to normal distribution when the sample size is sufficiently large. This 
paper examines the problem of how to evaluate sample size in order to determine that 
a statistic’s distribution does not depart from normal distribution by more than an 
assumed amount. Two procedures are proposed to evaluate the necessary sample size. 
The first is based on Berry-Esseen inequality while the second is based on simulation 
procedure. In order to evaluate the necessary sample size, the distribution of the sample 
mean is generated by replicating samples of a fixed size. Next, the normal distribution 
of the evaluated sample means is tested. The size of the generated samples is gradually 
increased until the hypothesis on the normality of the sample mean distribution is not 
rejected. This procedure is applied in the cases of statistics other than sample mean.
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1. Introduction

Statistical inference procedures such as testing hypotheses or evaluating 
confidence intervals depend on the distribution properties of test statistics or 
estimators which can be evaluated on the basis of complex samples. Usually, 
a statistic’s exact distribution is not known except as some function of a normal 
simple random sample. In this situation, it is convenient if the probability 
distribution of the statistic converges to normal distribution when the sample size 
is sufficiently large. This leads to the problem of how to evaluate sample size so 
that the departure of the distribution of the statistic from normal distribution is 
not larger than the level assumed. This problem is frequently taken into account 
in statistics literature, but usually where simple random sample is involved. This 
paper discusses the problem under complex samples drawn from fixed and finite 
populations.

In some situations, it is possible to observe all values of an auxiliary variable 
in an entire population. Moreover, let us assume that the value of the correlation 
coefficient between the auxiliary variable and the variable under consideration 
here is close to one. In this case, we can expect that the degree of convergence to 
normal distribution of, e.g., the sample average of the auxiliary variable and the 
distribution of the sample mean of the variable under consideration will be similar. 
This allows us to assess the size of the sample, providing a sufficient degree of 
convergence of the sample mean distribution to normal distribution. 

Two procedures are proposed to evaluate the necessary sample size. The first 
is based on the Berry-Esseen equality, while the second is based on a simulation 
procedure. The sample mean’s distribution is generated by replicating samples 
of fixed size. Next, the normal distribution of the evaluated sample means is 
then tested. The size of the generated samples is gradually increased until the 
hypothesis on the normality of the sample mean distribution is not rejected. 
The normality of generated values of the sample mean is tested by means of the 
chi-square test of goodness of fit. The hypothesis on normal distribution is verified 
under the assumed significance level as well as the power of the test. The outlined 
procedure is used to assess the necessary sample size of statistics other than 
sample mean. Complex sampling schemes are also taken into account.

The properties of central limit theorems allow us to evaluate sample sizes 
in such a way that the probability distribution of, e.g., the standardised sample 
mean does not differ from standard normal distribution by more than an assumed 
level. The distribution of the simple random sample frequency is approximated by 
means of several methods reviewed e.g. by G. A. F. Seber (2013) and T. P. Ryan 
(2013). In the case of continuous or integer random variables, a bootstrap version 
of the statistics can be analysed. In this case, the statistical distribution can be 
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approximated by means of the well-known F. Y. Edgeworth (1907) expansion, 
which has been detailed by P. Hall (1992). In the case of sampling from a fixed 
population, the central theorems have been considered e.g. by Y. G. Berger (1998), 
W. A. Fuller (2009) and J. Hájek (1964, 1981).

Using appropriately prepared computer simulation experiments, it is possible 
to determine what sample size is necessary to assure sufficient convergence 
of the distribution of a statistic to the appropriate asymptotic distribution. This 
problem has been considered e.g. by M. R. Chernick and C. Y. Liu (2002) and 
T. P. Ryan (2013) in the context of sample frequency. F. Greselin and M. Zenga 
(2006) considered the simulation analysis for determining sample size, which 
assures sufficient convergence of Gini’s statistic to normality. Some similar ideas 
are developed below.

Let (x; y) be highly correlated variables observed in a population U of size N. 
These variables’ values are denoted by (xi; yi ), i = 1, …, N. We assume that the 
values of the auxiliary variable x are observed in the whole population U but the 
values of the variable under study y are observed only in a sample s of size n < N 
drawn from U. The random sample will be denoted by S and its observation by s 
treated as the set consisting of the population elements. The sample is drawn from 
the population according to sampling design denoted by P s 0>^ h  for all Ssd  
and ,P s 1

Ss
=

d
^ h/  where S is the sample space, see e.g. C. M. Cassel et al. (1977) 

or Y. Tillé (2006).

2. Numerical Approximation of Sample Size

Let z ,x S and z , Sy  be statistics evaluated based on data observed in sample S. 
Because values of x are observed in the whole population U, it is possible to 
observe values z ,x s of z ,x S in all samples which can be drawn from population U. 
In practice, values of variable y are observed only in one sample s. Let us assume 
that the two-dimensional normal distribution (with the marginal distributions equal 
to standard normal distribution and the correlation coefficient close to one) is the 
limit distribution of statistics ,z z, ,x S Sy^ h. This convergence can be proved using 
H. Cramér’s (1946) results. Hence, we can expect that when we evaluate sample 
size no, which assures the sufficient convergence of statistic z ,x S to standard normal 
distribution, then the same sample size is also sufficient for the convergence of z , Sy  
to standard normal distribution.

Let us assume that xi = yi + di, i = 1, …, N. xi can be treated as a measure of yi 
contaminated by error di . The following notation will be useful: 
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Definitions of the parameters , , , , , , ,, , , ,y y v v vv, , , , , ,,, r y r r y r r y Sd d d d S dy r S yη τ λη τ λr r  
are analogous with the above ones. Under the assumption that variables y and d 
are independent, the squared correlation coefficient between x and y is equal to:
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When S is the simple random sample drawn with replacement from U, the Berry- 
-Esseen inequality, following M. Krzyśko (2000), becomes: 

 ≤ ,sup F z z
n

–,
,

s
y s

y 3
ζ
τ

Φ^ ^h h  

where F z,x s^ h is the sample distribution of ,z z,x S Φ^ h is the distribution of standard 
normal random variable, and ≤ ,0 8</1 2–π ζ . J. L. Wywiał (2016) showed that: 
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Under the assumption that variables x and d are independent, after appropriate 
algebraic computations it can be shown that: 
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Finally:
 ,f6 1 1–, , ,y x d4 4 4

2 2–η η ηκ κκ κ+ += + =^ ^ ^ ^h h h h  

,y 4η  is a strictly decreasing function of k because we can show that f 0<kl̂ h  for 
;0 1dk ^ @. Hence, inequality:

 ≤ . .sup F z z n
f

0 8–, ,
Ss

y s y s
κ

Φ
d

^ ^ ^h h h
 

Let us assess the necessary sample size when the approximate values of the 
parameters ,, ,x d4 4η η , and k are known. f 0^ h takes an infinitely large value and 

f 1 ,x 4η=^ h . When we assume that . ≤ ,n
f

0 8 0
κ

Δ
^ h

 where Δ0 is an admissible 
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difference between the sample distribution of the statistic and the standard normal 
distribution, the necessary sample size yields the following expression:
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Hence, necessary sample size no is a decreasing function of coefficient k.

Example 1. For instance, when , , .4 4 0 99, ,x d4 4η η κ= = =  and .0 01Δ = , then 
n > no = 26 676. If , , .4 4 0 9, ,x d4 4η η κ= = =  and .0 01Δ =  then n > no = 42 539. 

3. Simulation Evaluation of Sample Size

3.1. Chi-square Test of Goodness of Fit

Sample size no will be evaluated on the basis of the following simulation 
experiment. Under assumed sample size, the normality of z ,x S is tested on the 
basis of its simulated values. In order to do that, a series of samples (sj, j = 1, …, r) 
each of size n are drawn independently from population U according to assumed 
sampling design. Let , ,z z z…, , ,x s

n
x s
n

x s
n
r1= a^ ^ ^ kh h h  be the sequence of the statistics 

evaluated based on the sequence of samples. Next the normal distribution of z ,x S 
can be tested on the basis of data z ,x s

n^ h . When the hypothesis on normality is not 
rejected, we can expect that the distribution of statistic z ,x S for the sample size 
no = n is sufficiently close to standard normal distribution. If the hypothesis on 
normality is rejected, a new series of samples is drawn, but each of them is of 
size n + d, where d ≥ 1. Using these samples, the sequence z ,x s

n d+^ h is evaluated, 
allowing us to again test the normality of z ,x S but for larger sample size n + d. 
The procedure is repeated until the hypothesis on the normality is not rejected. 
In order to verify the hypothesis that z ,x S has standard normal distribution, several 
test statistics can be used, e.g. Kolmogorov or Shapiro-Wilk statistics. However, 
the powers of these tests cannot be easily controlled. That is why we use the 
chi-square test of goodness of fit.

Usually, z ,x S is used to construct confidence intervals or test statistics on the 
expected value of variable x. In this case only the quantiles of high or small degrees 
of z ,x S have to be close to the appropriate quantiles of standard normal distribution. 
J. L. Wywiał (2016) proposed the following procedure for evaluating the necessary 
sample size. When ;Z N 0 1+ ^ h, we expect that z, where P zZ < λ=λ^ h  is close 
to zn,λ where P z z<; ,x n n λ=λ^ h . Usually, λ = 0.01; 0.05; 0.1; 0.9; 0.95; 0.99. Let 
� , ,… K1λ λ= 6 @, where P Z z< ,k kλ=λ^ h , k = 1, …, K. More formally, the following 
hypothesis must be tested:
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 � � � � �: , : ≠H H0 0 1 1 0= = . 

Let , ,� … K1 1ω ω= +6 @, where –k k k 1–ω λ λ= , k = 2, …, K, ,k K1 1 1ω λ ω= =+  
1– Kλ= . The above hypotheses can be rewritten as follows:

 � � � � �: , : ≠ .H H0 0 1 1 0= =  

We can verify this using chi-square test of goodness of fit under fixed signi- 
ficance level α and power α. Several variants of the test have been considered – 
e.g. by F. C. Drost et al. (1989) and T. J. Santer and D. E. Duffy (1989). The test 
statistic is as follows:

 ,Q r
W –

,n r
k k

k

K

k1

1 2ω
ω=

=

+ ^ h/  (2)

where:

 ,W r I z1
,k k x
n

j

r

S
1 j

=
=
a ^ kh/  (3)

if ≤z z z< ,x s
n

k j k1–λ λ
^ h , then I z 1,k x s

n
j =a ^ kh  otherwise I z 0,k x s

n
j =a ^ kh , k = 1, …, K + 1, 

z –0 3=λ , z K 1 3=λ + . Under a sufficiently large number r, the statistic Qn, r has 
chi-square distribution with K degrees of freedom (denoted by K

2χ κ^ h) and the 
following non-centrality parameter:

 � �, .r
–
,

, ,

k

k k

k

K

0 1 0

0 1
2

1

1
δ ω

ω ω
=

=

+
^ ^h h/  (4)

The quantity δ(.,.) can be treated as distance between distributions specified 
by the hypotheses H0 and H1. Particularly, we will consider the following vector 
of probabilities:
 �0 = [0.01  0.04  0.05  0.8  0.05  0.04  0.01],

 �1
1 =^ h  [0.012  0.048  0.06  0.76  0.06  0.048  0.012],

 �1
2 =^ h  [0.011  0.044  0.055  0.78  0.055  0.044  0.011]. 

Let us note that we do not consider, e.g., the alternative: � *
1
1 =^ h  [0.008  0.036  0.04 

0.832  0.04  0.036  0.008] because the chi-square test does not select the difference 
between �1

1^ h alternatives and � *
1
1^ h. In this case the non-centrality coefficient 

takes the same value. Expression (4) allows us to calculate that � �, .0 010 1
1δ =^ ^ hh , 

� �, .0 00250 1
2δ =^ ^ hh .

When hypothesis H0 is true, the test statistic Qn, r has the central chi-square 
distribution K

2χ  with K = 6 degrees of freedom, provided that r is large. 
W. G. Cochran (1952) wrote that convergence to asymptotic distribution is 
sufficiently accurate when r0 = 5/ω0 where min

, ,k K k0 1 1…
ω ω=

= + " ,. Hence, in our 



On the Evaluation of Sample Size… 23

case, for ω0 = 0.01, r0 = 500. The algorithm for evaluating r is as follows. Firstly, 
based on K

2χ  distribution, the critical value qα of the test is determined under an 
assumed significance level α. Next, the power of the test is calculated for r ≥ r0 
according to � �,r q HP ≥r K

2
0 1 1β χ δ= αa ^ ^ hh k and q HP ≥K2 0α χ= αa k. The r0 is 

treated as the start number of sample replication. If for fixed r ≥ r0, βr is not less 
than the assumed level β, then size r is sufficiently large and it will be denoted 
by r#. Otherwise, the power is calculated for r + 10 and so on.

Example 2. Consider these hypotheses:

 � � � �: , : .H H0 0 1 1
2= = ^ h  (5)

The significance level is α = 0.05 and power β = 0.95, � �, . .0 00250 1
2δ =^ ^ hh  The 

above algorithm leads to the necessary number of the sample replication being 
r# = 8350. The next variants for calculating r# are presented in the first three 
columns of Table 1 – also see (Wywiał 2016).

3.2. Evaluation of Sample Size in Order to Assure the Normal Distribution 
of Some Statistics

Let us consider the determination of sample size n of a simple random sample 
in order to assure convergence of the standardised sample mean distribution 
to standard normal distribution when the sample is drawn from non-normal 
distribution. Let us suppose that a sample of size n is drawn with replacement 
from a population of size N, where values of variable x are observed. Next, the 
statistic z ,x S is evaluated in the case when simple random sample is drawn with 
replacement. For sampling without replacement, the test statistic is as follows: 

 .z
N n v
x x

Nn
–
–

,
,

x S
x S

S
1 =

r r

^ h  

Our purpose is to evaluate the sample sizes so that z ,x S and z ,x S1  converge 
sufficiently well to standard normal distribution. In order to do this, the sample 
sizes are replicated r-times. Values of the statistics are calculated on the basis of 
the replicated samples. Next, the value of the chi-square test statistic is calculated 
by means of expression (2). Bear in mind that under assumed significance level α 
and the number of sample replications r#, the chi-square test has power β. If the 
test rejects hypothesis H0, then an increase of d has to be added to sample size n 
and the described algorithm has to be repeated for n + d. When the test does not 
reject the hypothesis, we state that n = nα, β. 
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Table 1. The Necessary Sample Sizes for Testing Normal Distributions of Statistics  
z ,x S and z ,x S1  under Assumed Significance Levels and Powers of the chi-square Test

α β r# p n n1

0.1 0.9 5870 1 920 930
2 520 510
4 300 320

0.05 0.95 8350 1 1060 1040
2 590 560
4 320 340

0.01 0.99 14 010 1 1440 1380
2 780 790
4 450 430

0.005 0.995 16 420 1 1530 1550
2 860 780
4 470 410

Source: the author’s own calculations.

Example 3. Let us consider a population of N = 100,000 values generated 
according to gamma probability distribution with shape parameter p and a scale 
parameter of one. Using the algorithm, the necessary sample sizes are evaluated. 
A computer simulation implements the above algorithm under the hypothesis 
given by (5) and several combinations of the significance levels and powers. The 
obtained results lead to Table 1. The algorithm for evaluating necessary sample 
sizes is replicated 10-times, which lets us compute the mean sample sizes denoted 
by n and n1 in the case of statistics z ,x S and z ,x S1 , respectively. In Table 1 we take 
into account only such α and β that α + β = 1. Note, however, that this assumption 
is unnecessary. 

Table 1 shows that the assessed mean sample sizes for both sampling 
without replacement and sampling with replacement are comparable. In general, 
when the significance level decreases and the power increases, the necessary 
sample size increases.

3.3. Evaluation of Complex Random Sample Size in Order to Assure 
the Normality of Some Statistics

Using the results of the previous sub-section, we can evaluate the necessary 
sample size for two complex sampling designs. The first is the well-known 
D. B. Lahiri (1951), H. Midzuno (1952) and A. R. Sen (1953) sampling design, 
which is defined by the following probability function:
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 , ,SP s N
n x

x ss
2

1–
d= r

r^ ch m  

where S is sample space. The sampling design is defined for a positive valued 
variable observed in the whole population. The inclusion probabilities of the first 
and second order are as follows:
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h k    k ≠ l = 1, …, N. 

The sampling scheme implementing the sampling design is as follows. Let 
pk = xk/xU , where k = 1, …, N and x NxU = r. The first element is drawn from the 
population into the sample with probability pk, k = 1, …, N. The next n – 1 elements 
are drawn without replacement from the remaining N – 1 elements of the population 
as a simple sample of size n – 1.

The population mean yr  is estimated by means of the following Horvitz- 
-Thompson (1952) estimator:

 .y N
y1

,HT S k
k

k S
π=

d

r /  

This is an unbiased estimator of yr, when πk > 0 for all k = 1, …, N. The unbiased 
estimator of variance proposed by A. R. Sen (1953), F. Yates and P. M. Grundy 
(1953) is as follows: 
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where ,,k k ll πΔ =  – πkπl for k ≠ l and Δk, k = πk(1 – πk ). This estimator is useful 
only when πk, l > 0 for all k, l = 1, …, N and k ≠ l.

Next, the sampling design provides samples s of fixed size n drawn with replace-
ment from population U with the above defined probabilities pk, k, …, N. This is 
a particular case of the multinomial sampling design (Tillé 2006, pp. 70–73). 
In this case the parameter yr  is estimated by means of the following Hansen- 
-Hurvitz (1943) estimator:
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The unbiased estimator of its variance is:
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Let us consider the following statistic:
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As we did in section 3.2, here we evaluate the necessary sample size in order to 
assure sufficient convergence of the distributions of statistics tHT, S and tHH, S to 
standard normal distribution.

Example 4. The simulation analysis is based on three appropriately generated 
sets of values ,y x ,k i k^ h, k = 1, …, N of a two-dimensional random variable 
denoted by ,Y Xi^ h, where Xi = Y + Di and i = 1, 2, 3. Variable Y has gamma 
distribution with a shape parameter equal to 4 and a scale parameter of 1. 
Moreover, D1 ~ N(0; 0.425), D2 ~ N(0; 0.294) and D3 ~ N(0; 0.125). The correlation 
coefficients are: , .Y X 0 91ρ =^ h , , .Y X 0 952ρ =^ h  and , .Y X 0 993ρ =^ h . For instance, 
values of Xi can be treated as observations of Y contaminated by errors which 
are values of Di, i = 1, 2, 3. According to the above sampling design, samples are 
replicated r-times. On the basis of such samples, the values of statistic tHT, S and 
tHH, S are calculated. As in Example 2, the hypothesis given by (5) is tested by 
means of the chi-square statistic. If the hypothesis is rejected, then sample size n 
is increased to n + 10 and the procedure is repeated. The algorithm is replicated 
until the hypothesis is not rejected. 

Table 2. The Necessary Sample Sizes for Ensuring Normal Distributions of the Statistics 
tHT, S and tHH, S under Assumed Significance Levels and Powers of the Test

α β r ρ
n

y ,H STr y ,H SHr

0.1 0.9 5870 0.9 360 50
0.95 440 50
0.99 450 60

0.05 0.95 8350 0.9 530 40
0.95 620 60
0.99 760 60

0.01 0.99 14 010 0.9 570 60
0.95 660 60
0.99 1330 60

Source: the author’s own calculations.

A sample size obtained in such a way is treated as sufficient for normal 
distribution of the statistic being considered under the assumed significance level 
as well as the power of the chi-square test statistic. The algorithm for evaluating 
the necessary sample sizes is replicated 10-times, allowing us to compute n. 
The results of the simulation experiments can be found in Table 2. 
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Based on Table 2, we can say that the necessary sample size, in order to assure 
sufficient convergence of statistic tHT, S to normality under sampling design P s2^ h, 
is at least seven times larger than it is for tHH, S under a sample drawn with 
replacement with probabilities proportional to the auxiliary variable values. Under 
the considered variants of significance levels and powers of the test, the necessary 
sample size in order to ensure the normal distribution of tHH, S distribution oscillates 
around 60. For tHT, S distribution, the necessary sample size increases when the 
significance level decreases and the power increases.

4. Conclusions

Both of the methods considered for evaluating necessary sample sizes in order 
to ensure statistics are normally distributed were based on the assumption that 
an auxiliary variable is known from a whole population. The method requires 
the assumption that standard normal distribution is the asymptotic distribution of 
the statistics under analysis. The first method of determining the sample size is 
based on the Berry-Esseen inequality. The particular case of dependence between 
variables x and y considered in Example 2 lets us conclude that the necessary 
sample size decreases when the correlation coefficient between these variables 
increases. 

In the case of the next method, the necessary sample size is evaluated by means 
of appropriate formulation of hypotheses on the normality coefficient. The tested 
and alternative hypotheses (see expression (5)) are constructed in such a way that 
the tails of the standard normal distribution are especially taken into account. 
The proposed simulation algorithm based on testing appropriate statistical 
hypothesis leads to the following conclusion. Under the evaluated sample size no, 
the hypothesis H0 on normal distribution of considered statistic is not rejected. 
This decision is wrong (type II error) with a probability of ν = 1 – β. Moreover, 
in the previous steps of the algorithm, when the sample size was shorter than the 
optimal level no, the alternative hypothesis H1 (determining the non-admissible 
distribution) was accepted. This was the wrong decision (type I error) with 
probability α. Hence, in consequence, the probabilities α and ν measure the risk 
of assessing the necessary sample size on the level no. When under the fixed 
distance measure � �,0 1δ^ h (see expression (4)) between the distributions 
specified by the hypotheses H0 and H1, we decrease the level of α or the level of 
ν, then size no increases. This usually causes the costs of data observations to rise. 
Hence, compromise levels for δ, α, ν and no need to be found. This procedure 
can be applied to more complicated statistics or more complex sampling schemes 
than those considered in this paper. Moreover, it is possible to generalise the 
obtained results on distributions of bootstrap type statistics.
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Symulacyjne wyznaczanie niezbędnego rozmiaru próby zapewniającego 
wystarczającą zbieżność rozkładu pewnych statystyk do rozkładu normalnego 
(Streszczenie)

Podczas testowania hipotez lub wyznaczania przedziałów ufności rozkłady pewnych 
statystyk zwykle nie są znane. Wygodne jest, gdy rozkłady takich statystyk można przybli-
żać rozkładem normalnym. Celem pracy jest wyznaczenie takiej liczebności próby, przy 
której rozkład statystyki jest dostatecznie dobrze aproksymowany rozkładem normalnym. 
Zaproponowano dwie procedury postępowania. Jedna z nich daje aproksymację liczebno-
ści próby na podstawie nierówności Berry-Esseena. Druga metoda polega na generowaniu 
serii prób o ustalonej liczebności, na podstawie których wyznacza się wartości statystyki. 
Opierając się na tych wartościach, testuje się normalność rozkładu statystyki. W razie 
odrzucenia hipotezy o normalności zwiększa się rozmiar generowanych prób. Procedurę 
tę powtarza się aż do ustalenia liczebności próby, przy której hipoteza o normalności nie 
jest odrzucona.

Słowa kluczowe: rozmiar próby, twierdzenia centralne, schemat losowania, symulacja 
komputerowa, test chi-kwadrat zgodności.


